| L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.809 + 0.587i)5-s + (−0.536 − 1.65i)7-s + (−0.309 + 0.951i)8-s − 10-s + (−2.35 + 2.33i)11-s + (4.96 + 3.60i)13-s + (0.536 − 1.65i)14-s + (−0.809 + 0.587i)16-s + (−0.791 + 0.575i)17-s + (−1.49 + 4.59i)19-s + (−0.809 − 0.587i)20-s + (−3.27 + 0.500i)22-s − 1.22·23-s + ⋯ |
| L(s) = 1 | + (0.572 + 0.415i)2-s + (0.154 + 0.475i)4-s + (−0.361 + 0.262i)5-s + (−0.202 − 0.624i)7-s + (−0.109 + 0.336i)8-s − 0.316·10-s + (−0.710 + 0.703i)11-s + (1.37 + 0.999i)13-s + (0.143 − 0.441i)14-s + (−0.202 + 0.146i)16-s + (−0.192 + 0.139i)17-s + (−0.342 + 1.05i)19-s + (−0.180 − 0.131i)20-s + (−0.698 + 0.106i)22-s − 0.255·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.470 - 0.882i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.470 - 0.882i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.859982 + 1.43260i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.859982 + 1.43260i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.809 - 0.587i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.809 - 0.587i)T \) |
| 11 | \( 1 + (2.35 - 2.33i)T \) |
| good | 7 | \( 1 + (0.536 + 1.65i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-4.96 - 3.60i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (0.791 - 0.575i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.49 - 4.59i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 1.22T + 23T^{2} \) |
| 29 | \( 1 + (-2.60 - 8.02i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (4.82 + 3.50i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.25 - 6.93i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.08 - 3.32i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 2.21T + 43T^{2} \) |
| 47 | \( 1 + (3.26 - 10.0i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (7.75 + 5.63i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (1.08 + 3.35i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-7.37 + 5.35i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 7.84T + 67T^{2} \) |
| 71 | \( 1 + (-3.19 + 2.31i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (3.73 + 11.5i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (8.57 + 6.23i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-4.35 + 3.16i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 5.93T + 89T^{2} \) |
| 97 | \( 1 + (-11.1 - 8.07i)T + (29.9 + 92.2i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42290373465857989602609031319, −9.400982491288952804431733527314, −8.337360787975057628907932808133, −7.68828132811350779053151210409, −6.72912158626716549557092584707, −6.18299519775400532005998201210, −4.92174541866060349187805791801, −4.05702037490290912932504362725, −3.29782034198410741492812669765, −1.75130504893046050922429523706,
0.63602675348653609567725090253, 2.38939776507885808078214942314, 3.31448836565314470851982966083, 4.28240825894852428544030382075, 5.49945788839817009272702338737, 5.90761278440373393179945063090, 7.10046180169699148416871079301, 8.294134044778752199410287478922, 8.743793076514592142409906377942, 9.833173153616905207464723150741