L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s + (0.809 − 0.587i)5-s + (−0.133 − 0.410i)7-s + (0.309 − 0.951i)8-s − 10-s + (−1.92 − 2.69i)11-s + (−3.19 − 2.31i)13-s + (−0.133 + 0.410i)14-s + (−0.809 + 0.587i)16-s + (2.76 − 2.01i)17-s + (−1.89 + 5.82i)19-s + (0.809 + 0.587i)20-s + (−0.0276 + 3.31i)22-s − 4.17·23-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.415i)2-s + (0.154 + 0.475i)4-s + (0.361 − 0.262i)5-s + (−0.0504 − 0.155i)7-s + (0.109 − 0.336i)8-s − 0.316·10-s + (−0.581 − 0.813i)11-s + (−0.884 − 0.642i)13-s + (−0.0356 + 0.109i)14-s + (−0.202 + 0.146i)16-s + (0.671 − 0.487i)17-s + (−0.434 + 1.33i)19-s + (0.180 + 0.131i)20-s + (−0.00588 + 0.707i)22-s − 0.869·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.946 + 0.323i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.946 + 0.323i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0979479 - 0.588944i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0979479 - 0.588944i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (1.92 + 2.69i)T \) |
good | 7 | \( 1 + (0.133 + 0.410i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (3.19 + 2.31i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.76 + 2.01i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.89 - 5.82i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 4.17T + 23T^{2} \) |
| 29 | \( 1 + (-0.195 - 0.602i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (8.34 + 6.06i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (2.26 + 6.98i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (0.821 - 2.52i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 11.5T + 43T^{2} \) |
| 47 | \( 1 + (0.917 - 2.82i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (4.24 + 3.08i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (3.35 + 10.3i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (8.51 - 6.18i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 10.9T + 67T^{2} \) |
| 71 | \( 1 + (8.29 - 6.03i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (3.44 + 10.5i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-6.02 - 4.37i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-6.37 + 4.63i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 1.34T + 89T^{2} \) |
| 97 | \( 1 + (-1.41 - 1.03i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.680842604966913295426897446316, −8.929937075727123677697826447306, −7.83570955817378833841182927614, −7.55520229432354982140425297675, −6.02806577501072289612688179325, −5.43690681386681491164663160779, −4.07704171925978104786440846064, −3.01346777552907193160885261172, −1.89236836812356597118340539089, −0.31100919850633050087641862713,
1.77598355005233069722962668646, 2.77574711441297523762297559755, 4.38668097711083593148956850035, 5.28208037253866302664777996992, 6.23652624503821787352393305525, 7.17042355730318431027249777301, 7.66021014836705419093436731570, 8.877161080075566300941180185626, 9.408590670007452837928236971419, 10.32185646806555138017258853292