L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s + (0.809 − 0.587i)5-s + (−0.536 − 1.65i)7-s + (0.309 − 0.951i)8-s − 10-s + (2.35 − 2.33i)11-s + (4.96 + 3.60i)13-s + (−0.536 + 1.65i)14-s + (−0.809 + 0.587i)16-s + (0.791 − 0.575i)17-s + (−1.49 + 4.59i)19-s + (0.809 + 0.587i)20-s + (−3.27 + 0.500i)22-s + 1.22·23-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.415i)2-s + (0.154 + 0.475i)4-s + (0.361 − 0.262i)5-s + (−0.202 − 0.624i)7-s + (0.109 − 0.336i)8-s − 0.316·10-s + (0.710 − 0.703i)11-s + (1.37 + 0.999i)13-s + (−0.143 + 0.441i)14-s + (−0.202 + 0.146i)16-s + (0.192 − 0.139i)17-s + (−0.342 + 1.05i)19-s + (0.180 + 0.131i)20-s + (−0.698 + 0.106i)22-s + 0.255·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.470 + 0.882i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.470 + 0.882i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.15918 - 0.695851i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.15918 - 0.695851i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (-2.35 + 2.33i)T \) |
good | 7 | \( 1 + (0.536 + 1.65i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-4.96 - 3.60i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-0.791 + 0.575i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.49 - 4.59i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 1.22T + 23T^{2} \) |
| 29 | \( 1 + (2.60 + 8.02i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (4.82 + 3.50i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.25 - 6.93i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.08 + 3.32i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 2.21T + 43T^{2} \) |
| 47 | \( 1 + (-3.26 + 10.0i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-7.75 - 5.63i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-1.08 - 3.35i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-7.37 + 5.35i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 7.84T + 67T^{2} \) |
| 71 | \( 1 + (3.19 - 2.31i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (3.73 + 11.5i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (8.57 + 6.23i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (4.35 - 3.16i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 5.93T + 89T^{2} \) |
| 97 | \( 1 + (-11.1 - 8.07i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.848255222586911375893613690383, −8.998105168549562703253213013246, −8.464194383107932989887470580146, −7.42898471626770621674772438497, −6.43087785493902717876123662195, −5.77075496100537596934094538260, −4.10667389332238188880246553290, −3.65058702586808438850541064025, −2.02685293597240099692729087800, −0.917502959655405859427447297451,
1.24708326257754889636649539720, 2.59306257154271006795834797330, 3.81297121425925859663033514869, 5.23263347623790557888846924725, 5.94971840198539584389718792355, 6.79277282157923525209288805289, 7.54730063219226241724330517369, 8.854325721376326288117519990751, 8.952484569516118183702901064680, 10.04726722740854081962598993795