L(s) = 1 | + (−0.809 + 0.587i)2-s + (0.309 − 0.951i)4-s + (0.809 + 0.587i)5-s + (1 − 3.07i)7-s + (0.309 + 0.951i)8-s − 10-s + (3.04 − 1.31i)11-s + (0.5 − 0.363i)13-s + (1 + 3.07i)14-s + (−0.809 − 0.587i)16-s + (−2.30 − 1.67i)17-s + (−1.61 − 4.97i)19-s + (0.809 − 0.587i)20-s + (−1.69 + 2.85i)22-s − 3.61·23-s + ⋯ |
L(s) = 1 | + (−0.572 + 0.415i)2-s + (0.154 − 0.475i)4-s + (0.361 + 0.262i)5-s + (0.377 − 1.16i)7-s + (0.109 + 0.336i)8-s − 0.316·10-s + (0.918 − 0.396i)11-s + (0.138 − 0.100i)13-s + (0.267 + 0.822i)14-s + (−0.202 − 0.146i)16-s + (−0.560 − 0.406i)17-s + (−0.371 − 1.14i)19-s + (0.180 − 0.131i)20-s + (−0.360 + 0.608i)22-s − 0.754·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.642 + 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11966 - 0.522297i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11966 - 0.522297i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 - 0.587i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 + (-3.04 + 1.31i)T \) |
good | 7 | \( 1 + (-1 + 3.07i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-0.5 + 0.363i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.30 + 1.67i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.61 + 4.97i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 3.61T + 23T^{2} \) |
| 29 | \( 1 + (1.57 - 4.84i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-3.11 + 2.26i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (0.263 - 0.812i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (3.61 + 11.1i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 0.854T + 43T^{2} \) |
| 47 | \( 1 + (3.51 + 10.8i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (0.381 - 0.277i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (2.11 - 6.51i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-8.47 - 6.15i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 6.32T + 67T^{2} \) |
| 71 | \( 1 + (-9.23 - 6.71i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.38 + 4.25i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-8.54 + 6.20i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (8.47 + 6.15i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 7.70T + 89T^{2} \) |
| 97 | \( 1 + (14.3 - 10.4i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.846781840423382137552107335194, −8.966578596551977640726767367797, −8.306285454184448274052095767496, −7.07516284199309018843203175694, −6.86204158364278588126138349040, −5.73383944943921329127383506089, −4.62438784460150598798806875358, −3.63122731453020331691704682939, −2.08283433273169261431406864507, −0.71645155606979031608310563040,
1.54574385524083320307623768795, 2.32794026481916982257967622213, 3.75511187534788835255004289722, 4.77941007750575807520015353213, 5.99729141608802362410283786732, 6.57569376567755282403495377863, 8.073861871536829616109173721611, 8.395025469474672526500442420640, 9.467076940502157071552438905304, 9.789375570602826406590765601784