L(s) = 1 | + (0.809 − 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.809 − 0.587i)5-s + (−1 + 3.07i)7-s + (−0.309 − 0.951i)8-s − 10-s + (−3.04 + 1.31i)11-s + (−2.73 + 1.98i)13-s + (1 + 3.07i)14-s + (−0.809 − 0.587i)16-s + (−4.92 − 3.57i)17-s + (0.381 + 1.17i)19-s + (−0.809 + 0.587i)20-s + (−1.69 + 2.85i)22-s − 6.85·23-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (0.154 − 0.475i)4-s + (−0.361 − 0.262i)5-s + (−0.377 + 1.16i)7-s + (−0.109 − 0.336i)8-s − 0.316·10-s + (−0.918 + 0.396i)11-s + (−0.758 + 0.551i)13-s + (0.267 + 0.822i)14-s + (−0.202 − 0.146i)16-s + (−1.19 − 0.868i)17-s + (0.0876 + 0.269i)19-s + (−0.180 + 0.131i)20-s + (−0.360 + 0.608i)22-s − 1.42·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.164537 + 0.352722i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.164537 + 0.352722i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 + 0.587i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.809 + 0.587i)T \) |
| 11 | \( 1 + (3.04 - 1.31i)T \) |
good | 7 | \( 1 + (1 - 3.07i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (2.73 - 1.98i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (4.92 + 3.57i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.381 - 1.17i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 6.85T + 23T^{2} \) |
| 29 | \( 1 + (-0.809 + 2.48i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.11 + 0.812i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (1.97 - 6.06i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (0.381 + 1.17i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 0.0901T + 43T^{2} \) |
| 47 | \( 1 + (-1.33 - 4.11i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-6.85 + 4.97i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (4.35 - 13.4i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 5.09T + 67T^{2} \) |
| 71 | \( 1 + (-8.47 - 6.15i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.14 + 12.7i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-3.30 + 2.40i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-3.23 - 2.35i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 17.2T + 89T^{2} \) |
| 97 | \( 1 + (15.0 - 10.9i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23852321881425447444615618623, −9.561952248899567749473356627766, −8.759472731249777928947856854008, −7.78229039671671130199758523829, −6.78102286746600749740277934197, −5.82299720815927701313603713092, −4.95875296838997163809502297769, −4.20039211515647385522598534765, −2.78216538830792372434486792709, −2.12950577741699391296448564696,
0.13289396607306210171495828909, 2.37550201068048897114303723931, 3.54432021940531699215982221097, 4.29105789478820072525649009665, 5.31565561944020148422548212535, 6.34578169460306173373654861594, 7.13458513392420455315312102854, 7.82321287753406230729641005743, 8.571795893588855149538935638654, 9.895964693268847718010512647722