Properties

Label 2-984-984.245-c0-0-3
Degree $2$
Conductor $984$
Sign $1$
Analytic cond. $0.491079$
Root an. cond. $0.700770$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 8-s + 9-s − 10-s − 12-s + 13-s + 15-s + 16-s + 17-s + 18-s + 19-s − 20-s − 24-s + 26-s − 27-s + 30-s − 31-s + 32-s + 34-s + 36-s + 38-s − 39-s − 40-s + ⋯
L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 8-s + 9-s − 10-s − 12-s + 13-s + 15-s + 16-s + 17-s + 18-s + 19-s − 20-s − 24-s + 26-s − 27-s + 30-s − 31-s + 32-s + 34-s + 36-s + 38-s − 39-s − 40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(984\)    =    \(2^{3} \cdot 3 \cdot 41\)
Sign: $1$
Analytic conductor: \(0.491079\)
Root analytic conductor: \(0.700770\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{984} (245, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 984,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.307696115\)
\(L(\frac12)\) \(\approx\) \(1.307696115\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
41 \( 1 + T \)
good5 \( 1 + T + T^{2} \)
7 \( ( 1 - T )( 1 + T ) \)
11 \( ( 1 - T )( 1 + T ) \)
13 \( 1 - T + T^{2} \)
17 \( 1 - T + T^{2} \)
19 \( 1 - T + T^{2} \)
23 \( ( 1 - T )( 1 + T ) \)
29 \( ( 1 - T )( 1 + T ) \)
31 \( 1 + T + T^{2} \)
37 \( ( 1 - T )( 1 + T ) \)
43 \( ( 1 - T )( 1 + T ) \)
47 \( ( 1 + T )^{2} \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( 1 + T + T^{2} \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( 1 - T + T^{2} \)
71 \( 1 - T + T^{2} \)
73 \( 1 + T + T^{2} \)
79 \( ( 1 - T )( 1 + T ) \)
83 \( 1 + T + T^{2} \)
89 \( 1 - T + T^{2} \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.57234385888703938530000410016, −9.653729732998442450855909727690, −8.159566801347177302612455568649, −7.46261537196194152962088416134, −6.65927594779266654447167594717, −5.72114314160017851274084188763, −5.04832573581779530329145162586, −3.96416847856150163924792326724, −3.33760011976684382992997045715, −1.41557719550640901446967341341, 1.41557719550640901446967341341, 3.33760011976684382992997045715, 3.96416847856150163924792326724, 5.04832573581779530329145162586, 5.72114314160017851274084188763, 6.65927594779266654447167594717, 7.46261537196194152962088416134, 8.159566801347177302612455568649, 9.653729732998442450855909727690, 10.57234385888703938530000410016

Graph of the $Z$-function along the critical line