L(s) = 1 | + (−1.5 − 2.59i)3-s + (−0.5 + 0.866i)5-s + (−3 + 5.19i)9-s + (1 + 1.73i)11-s + 6·13-s + 3·15-s + (1 + 1.73i)17-s + (4.5 − 7.79i)23-s + (−0.499 − 0.866i)25-s + 9·27-s + 3·29-s + (1 + 1.73i)31-s + (3 − 5.19i)33-s + (−4 + 6.92i)37-s + (−9 − 15.5i)39-s + ⋯ |
L(s) = 1 | + (−0.866 − 1.49i)3-s + (−0.223 + 0.387i)5-s + (−1 + 1.73i)9-s + (0.301 + 0.522i)11-s + 1.66·13-s + 0.774·15-s + (0.242 + 0.420i)17-s + (0.938 − 1.62i)23-s + (−0.0999 − 0.173i)25-s + 1.73·27-s + 0.557·29-s + (0.179 + 0.311i)31-s + (0.522 − 0.904i)33-s + (−0.657 + 1.13i)37-s + (−1.44 − 2.49i)39-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.386+0.922i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.386+0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.386+0.922i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(961,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.386+0.922i)
|
Particular Values
L(1) |
≈ |
0.986053−0.655905i |
L(21) |
≈ |
0.986053−0.655905i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.5−0.866i)T |
| 7 | 1 |
good | 3 | 1+(1.5+2.59i)T+(−1.5+2.59i)T2 |
| 11 | 1+(−1−1.73i)T+(−5.5+9.52i)T2 |
| 13 | 1−6T+13T2 |
| 17 | 1+(−1−1.73i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−9.5−16.4i)T2 |
| 23 | 1+(−4.5+7.79i)T+(−11.5−19.9i)T2 |
| 29 | 1−3T+29T2 |
| 31 | 1+(−1−1.73i)T+(−15.5+26.8i)T2 |
| 37 | 1+(4−6.92i)T+(−18.5−32.0i)T2 |
| 41 | 1+5T+41T2 |
| 43 | 1−T+43T2 |
| 47 | 1+(−4+6.92i)T+(−23.5−40.7i)T2 |
| 53 | 1+(2+3.46i)T+(−26.5+45.8i)T2 |
| 59 | 1+(4+6.92i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−3.5+6.06i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.5−2.59i)T+(−33.5+58.0i)T2 |
| 71 | 1−8T+71T2 |
| 73 | 1+(−7−12.1i)T+(−36.5+63.2i)T2 |
| 79 | 1+(2−3.46i)T+(−39.5−68.4i)T2 |
| 83 | 1−T+83T2 |
| 89 | 1+(−6.5+11.2i)T+(−44.5−77.0i)T2 |
| 97 | 1−10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.12415045780528937101596296056, −8.575985217166682750136144618897, −8.199973389632290018009885314443, −6.89064595664227616231617602403, −6.69752257954642342614077714698, −5.83866256231900707754218541761, −4.74011430270501850512274903563, −3.35323353790531445569869501298, −1.96222052862298600103783583546, −0.869566947810801854820645664028,
0.998071215017101942980472863605, 3.35284352103996439862655159452, 3.90327264761187513524774144251, 4.95869957540646618009965506755, 5.66851783944335284476522793276, 6.40432213967838869900548633656, 7.74886919339459238350470747174, 9.019429307288767411934948838560, 9.140461885245802917817875130940, 10.31129931620928935996612885302