L(s) = 1 | + (−1.5 − 2.59i)3-s + (−0.5 + 0.866i)5-s + (−3 + 5.19i)9-s + (1 + 1.73i)11-s + 6·13-s + 3·15-s + (1 + 1.73i)17-s + (4.5 − 7.79i)23-s + (−0.499 − 0.866i)25-s + 9·27-s + 3·29-s + (1 + 1.73i)31-s + (3 − 5.19i)33-s + (−4 + 6.92i)37-s + (−9 − 15.5i)39-s + ⋯ |
L(s) = 1 | + (−0.866 − 1.49i)3-s + (−0.223 + 0.387i)5-s + (−1 + 1.73i)9-s + (0.301 + 0.522i)11-s + 1.66·13-s + 0.774·15-s + (0.242 + 0.420i)17-s + (0.938 − 1.62i)23-s + (−0.0999 − 0.173i)25-s + 1.73·27-s + 0.557·29-s + (0.179 + 0.311i)31-s + (0.522 − 0.904i)33-s + (−0.657 + 1.13i)37-s + (−1.44 − 2.49i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.986053 - 0.655905i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.986053 - 0.655905i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (1.5 + 2.59i)T + (-1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 6T + 13T^{2} \) |
| 17 | \( 1 + (-1 - 1.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.5 + 7.79i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 3T + 29T^{2} \) |
| 31 | \( 1 + (-1 - 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4 - 6.92i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 5T + 41T^{2} \) |
| 43 | \( 1 - T + 43T^{2} \) |
| 47 | \( 1 + (-4 + 6.92i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2 + 3.46i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (4 + 6.92i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.5 - 2.59i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 + (-7 - 12.1i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2 - 3.46i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - T + 83T^{2} \) |
| 89 | \( 1 + (-6.5 + 11.2i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 10T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12415045780528937101596296056, −8.575985217166682750136144618897, −8.199973389632290018009885314443, −6.89064595664227616231617602403, −6.69752257954642342614077714698, −5.83866256231900707754218541761, −4.74011430270501850512274903563, −3.35323353790531445569869501298, −1.96222052862298600103783583546, −0.869566947810801854820645664028,
0.998071215017101942980472863605, 3.35284352103996439862655159452, 3.90327264761187513524774144251, 4.95869957540646618009965506755, 5.66851783944335284476522793276, 6.40432213967838869900548633656, 7.74886919339459238350470747174, 9.019429307288767411934948838560, 9.140461885245802917817875130940, 10.31129931620928935996612885302