L(s) = 1 | − 1.73i·3-s + (2.13 + 0.656i)5-s + 2.27·11-s + 6.09i·13-s + (1.13 − 3.70i)15-s + 4.77i·17-s + 4.27·19-s − 0.894i·23-s + (4.13 + 2.80i)25-s − 5.19i·27-s + 3.27·29-s − 4.27·31-s − 3.94i·33-s − 5.61i·37-s + 10.5·39-s + ⋯ |
L(s) = 1 | − 0.999i·3-s + (0.955 + 0.293i)5-s + 0.685·11-s + 1.68i·13-s + (0.293 − 0.955i)15-s + 1.15i·17-s + 0.980·19-s − 0.186i·23-s + (0.827 + 0.561i)25-s − 1.00i·27-s + 0.608·29-s − 0.767·31-s − 0.685i·33-s − 0.923i·37-s + 1.68·39-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.955+0.293i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.955+0.293i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.955+0.293i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(589,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.955+0.293i)
|
Particular Values
L(1) |
≈ |
2.04021−0.306350i |
L(21) |
≈ |
2.04021−0.306350i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−2.13−0.656i)T |
| 7 | 1 |
good | 3 | 1+1.73iT−3T2 |
| 11 | 1−2.27T+11T2 |
| 13 | 1−6.09iT−13T2 |
| 17 | 1−4.77iT−17T2 |
| 19 | 1−4.27T+19T2 |
| 23 | 1+0.894iT−23T2 |
| 29 | 1−3.27T+29T2 |
| 31 | 1+4.27T+31T2 |
| 37 | 1+5.61iT−37T2 |
| 41 | 1+11.2T+41T2 |
| 43 | 1−6.50iT−43T2 |
| 47 | 1−2.15iT−47T2 |
| 53 | 1+7.40iT−53T2 |
| 59 | 1+4.27T+59T2 |
| 61 | 1−1.54T+61T2 |
| 67 | 1+13.9iT−67T2 |
| 71 | 1−10.5T+71T2 |
| 73 | 1+2.15iT−73T2 |
| 79 | 1−0.274T+79T2 |
| 83 | 1+5.67iT−83T2 |
| 89 | 1−7T+89T2 |
| 97 | 1+6.92iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.800054118687206859668603999647, −9.223899700719123256339317963550, −8.270127384898417845766557641650, −7.16053451874479466730082982188, −6.61569728695963710160373894604, −6.00934625557292535539049770195, −4.74155372741330535889366609832, −3.54953427983868203590556281641, −2.03410528293657867251889262524, −1.46707223415394666313660463887,
1.15338412196087249873991553514, 2.80284053534712485165337929509, 3.72775695241190780099359122473, 5.12262614404867285132776932416, 5.27761544728862968081407774533, 6.55189533247964646349836358030, 7.53312433866475062999696157685, 8.679168755041749053163975472392, 9.376549480145638012281000144870, 10.06034024267647370788569403097