L(s) = 1 | − 1.73i·3-s + (2.13 + 0.656i)5-s + 2.27·11-s + 6.09i·13-s + (1.13 − 3.70i)15-s + 4.77i·17-s + 4.27·19-s − 0.894i·23-s + (4.13 + 2.80i)25-s − 5.19i·27-s + 3.27·29-s − 4.27·31-s − 3.94i·33-s − 5.61i·37-s + 10.5·39-s + ⋯ |
L(s) = 1 | − 0.999i·3-s + (0.955 + 0.293i)5-s + 0.685·11-s + 1.68i·13-s + (0.293 − 0.955i)15-s + 1.15i·17-s + 0.980·19-s − 0.186i·23-s + (0.827 + 0.561i)25-s − 1.00i·27-s + 0.608·29-s − 0.767·31-s − 0.685i·33-s − 0.923i·37-s + 1.68·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.955 + 0.293i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.955 + 0.293i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.04021 - 0.306350i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.04021 - 0.306350i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2.13 - 0.656i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 1.73iT - 3T^{2} \) |
| 11 | \( 1 - 2.27T + 11T^{2} \) |
| 13 | \( 1 - 6.09iT - 13T^{2} \) |
| 17 | \( 1 - 4.77iT - 17T^{2} \) |
| 19 | \( 1 - 4.27T + 19T^{2} \) |
| 23 | \( 1 + 0.894iT - 23T^{2} \) |
| 29 | \( 1 - 3.27T + 29T^{2} \) |
| 31 | \( 1 + 4.27T + 31T^{2} \) |
| 37 | \( 1 + 5.61iT - 37T^{2} \) |
| 41 | \( 1 + 11.2T + 41T^{2} \) |
| 43 | \( 1 - 6.50iT - 43T^{2} \) |
| 47 | \( 1 - 2.15iT - 47T^{2} \) |
| 53 | \( 1 + 7.40iT - 53T^{2} \) |
| 59 | \( 1 + 4.27T + 59T^{2} \) |
| 61 | \( 1 - 1.54T + 61T^{2} \) |
| 67 | \( 1 + 13.9iT - 67T^{2} \) |
| 71 | \( 1 - 10.5T + 71T^{2} \) |
| 73 | \( 1 + 2.15iT - 73T^{2} \) |
| 79 | \( 1 - 0.274T + 79T^{2} \) |
| 83 | \( 1 + 5.67iT - 83T^{2} \) |
| 89 | \( 1 - 7T + 89T^{2} \) |
| 97 | \( 1 + 6.92iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.800054118687206859668603999647, −9.223899700719123256339317963550, −8.270127384898417845766557641650, −7.16053451874479466730082982188, −6.61569728695963710160373894604, −6.00934625557292535539049770195, −4.74155372741330535889366609832, −3.54953427983868203590556281641, −2.03410528293657867251889262524, −1.46707223415394666313660463887,
1.15338412196087249873991553514, 2.80284053534712485165337929509, 3.72775695241190780099359122473, 5.12262614404867285132776932416, 5.27761544728862968081407774533, 6.55189533247964646349836358030, 7.53312433866475062999696157685, 8.679168755041749053163975472392, 9.376549480145638012281000144870, 10.06034024267647370788569403097