L(s) = 1 | + (−1 + 2i)5-s + 3·9-s − 4i·13-s + 4i·17-s + 4·19-s + 8i·23-s + (−3 − 4i)25-s − 2·29-s + 8·31-s + 8i·37-s − 6·41-s + 8i·43-s + (−3 + 6i)45-s + 8i·47-s − 4·59-s + ⋯ |
L(s) = 1 | + (−0.447 + 0.894i)5-s + 9-s − 1.10i·13-s + 0.970i·17-s + 0.917·19-s + 1.66i·23-s + (−0.600 − 0.800i)25-s − 0.371·29-s + 1.43·31-s + 1.31i·37-s − 0.937·41-s + 1.21i·43-s + (−0.447 + 0.894i)45-s + 1.16i·47-s − 0.520·59-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.447−0.894i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(589,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.447−0.894i)
|
Particular Values
L(1) |
≈ |
1.28325+0.793098i |
L(21) |
≈ |
1.28325+0.793098i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(1−2i)T |
| 7 | 1 |
good | 3 | 1−3T2 |
| 11 | 1+11T2 |
| 13 | 1+4iT−13T2 |
| 17 | 1−4iT−17T2 |
| 19 | 1−4T+19T2 |
| 23 | 1−8iT−23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1−8T+31T2 |
| 37 | 1−8iT−37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−8iT−43T2 |
| 47 | 1−8iT−47T2 |
| 53 | 1−53T2 |
| 59 | 1+4T+59T2 |
| 61 | 1−6T+61T2 |
| 67 | 1+8iT−67T2 |
| 71 | 1−12T+71T2 |
| 73 | 1−4iT−73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1+12iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.05233075025307437457255620931, −9.664454064208399134561197183584, −8.142734267157461736751636478283, −7.73245463829029371021455980558, −6.82286378000839713123443864296, −5.97249057170617375311967569198, −4.85222644296536460126174026308, −3.71245667115707378202967247638, −2.97490547179958909482585564847, −1.38123482634235965320934201771,
0.795800109119008986207509747722, 2.17543261314394075770418611888, 3.75797069881104069637612385180, 4.55558651605682777273395501259, 5.27094420487273348104079897818, 6.66267580602216179562967404843, 7.26938529790489518941486150390, 8.257272721551026313630727910791, 9.064975301251896972903238645405, 9.718041539332464626372441339389