L(s) = 1 | − 1.73i·3-s + (−1.63 − 1.52i)5-s − 5.27·11-s − 2.62i·13-s + (−2.63 + 2.83i)15-s + 0.418i·17-s − 3.27·19-s + 7.82i·23-s + (0.362 + 4.98i)25-s − 5.19i·27-s − 4.27·29-s + 3.27·31-s + 9.13i·33-s − 9.97i·37-s − 4.54·39-s + ⋯ |
L(s) = 1 | − 0.999i·3-s + (−0.732 − 0.680i)5-s − 1.59·11-s − 0.728i·13-s + (−0.680 + 0.732i)15-s + 0.101i·17-s − 0.751·19-s + 1.63i·23-s + (0.0725 + 0.997i)25-s − 1.00i·27-s − 0.793·29-s + 0.588·31-s + 1.59i·33-s − 1.63i·37-s − 0.728·39-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.732−0.680i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.732−0.680i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.732−0.680i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(589,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.732−0.680i)
|
Particular Values
L(1) |
≈ |
0.122424+0.311423i |
L(21) |
≈ |
0.122424+0.311423i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(1.63+1.52i)T |
| 7 | 1 |
good | 3 | 1+1.73iT−3T2 |
| 11 | 1+5.27T+11T2 |
| 13 | 1+2.62iT−13T2 |
| 17 | 1−0.418iT−17T2 |
| 19 | 1+3.27T+19T2 |
| 23 | 1−7.82iT−23T2 |
| 29 | 1+4.27T+29T2 |
| 31 | 1−3.27T+31T2 |
| 37 | 1+9.97iT−37T2 |
| 41 | 1+3.72T+41T2 |
| 43 | 1−2.15iT−43T2 |
| 47 | 1−6.50iT−47T2 |
| 53 | 1−5.67iT−53T2 |
| 59 | 1−3.27T+59T2 |
| 61 | 1+13.5T+61T2 |
| 67 | 1−3.52iT−67T2 |
| 71 | 1+4.54T+71T2 |
| 73 | 1+6.50iT−73T2 |
| 79 | 1+7.27T+79T2 |
| 83 | 1−7.40iT−83T2 |
| 89 | 1−7T+89T2 |
| 97 | 1+6.92iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.384066696427408896320986229769, −8.355961166120597213748209635776, −7.65354184175091055727912419306, −7.37940209413697101786663662767, −5.97895002338454314539707554362, −5.21747600458643885160863039927, −4.12936958292740178855440717374, −2.87246584958509110039018861677, −1.57719551285500936595430011296, −0.14982028937357912319505609570,
2.36985197177523433474671115118, 3.39068386288163115165096481636, 4.40872524139374407758221726370, 4.97758471321037013244516068047, 6.33452093959358487028270113513, 7.16299970214427679415899052316, 8.113536126278013440736777859913, 8.805116315245803231078958460782, 10.05749508215314717036121780905, 10.37546714804576652590577271595