Properties

Label 2-980-28.27-c1-0-61
Degree 22
Conductor 980980
Sign 0.4460.894i0.446 - 0.894i
Analytic cond. 7.825337.82533
Root an. cond. 2.797382.79738
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.17 + 0.784i)2-s + 2.99·3-s + (0.767 + 1.84i)4-s + i·5-s + (3.52 + 2.35i)6-s + (−0.546 + 2.77i)8-s + 5.98·9-s + (−0.784 + 1.17i)10-s − 2.23i·11-s + (2.30 + 5.53i)12-s − 3.17i·13-s + 2.99i·15-s + (−2.82 + 2.83i)16-s − 3.44i·17-s + (7.04 + 4.70i)18-s − 2.05·19-s + ⋯
L(s)  = 1  + (0.831 + 0.555i)2-s + 1.73·3-s + (0.383 + 0.923i)4-s + 0.447i·5-s + (1.43 + 0.960i)6-s + (−0.193 + 0.981i)8-s + 1.99·9-s + (−0.248 + 0.372i)10-s − 0.674i·11-s + (0.664 + 1.59i)12-s − 0.879i·13-s + 0.774i·15-s + (−0.705 + 0.708i)16-s − 0.835i·17-s + (1.66 + 1.10i)18-s − 0.470·19-s + ⋯

Functional equation

Λ(s)=(980s/2ΓC(s)L(s)=((0.4460.894i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.446 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(980s/2ΓC(s+1/2)L(s)=((0.4460.894i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.446 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 980980    =    225722^{2} \cdot 5 \cdot 7^{2}
Sign: 0.4460.894i0.446 - 0.894i
Analytic conductor: 7.825337.82533
Root analytic conductor: 2.797382.79738
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ980(391,)\chi_{980} (391, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 980, ( :1/2), 0.4460.894i)(2,\ 980,\ (\ :1/2),\ 0.446 - 0.894i)

Particular Values

L(1)L(1) \approx 3.75951+2.32501i3.75951 + 2.32501i
L(12)L(\frac12) \approx 3.75951+2.32501i3.75951 + 2.32501i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.170.784i)T 1 + (-1.17 - 0.784i)T
5 1iT 1 - iT
7 1 1
good3 12.99T+3T2 1 - 2.99T + 3T^{2}
11 1+2.23iT11T2 1 + 2.23iT - 11T^{2}
13 1+3.17iT13T2 1 + 3.17iT - 13T^{2}
17 1+3.44iT17T2 1 + 3.44iT - 17T^{2}
19 1+2.05T+19T2 1 + 2.05T + 19T^{2}
23 12.66iT23T2 1 - 2.66iT - 23T^{2}
29 1+7.38T+29T2 1 + 7.38T + 29T^{2}
31 14.89T+31T2 1 - 4.89T + 31T^{2}
37 1+11.1T+37T2 1 + 11.1T + 37T^{2}
41 1+1.46iT41T2 1 + 1.46iT - 41T^{2}
43 19.95iT43T2 1 - 9.95iT - 43T^{2}
47 1+6.12T+47T2 1 + 6.12T + 47T^{2}
53 14.65T+53T2 1 - 4.65T + 53T^{2}
59 17.11T+59T2 1 - 7.11T + 59T^{2}
61 12.53iT61T2 1 - 2.53iT - 61T^{2}
67 1+0.0527iT67T2 1 + 0.0527iT - 67T^{2}
71 10.212iT71T2 1 - 0.212iT - 71T^{2}
73 1+14.8iT73T2 1 + 14.8iT - 73T^{2}
79 1+0.461iT79T2 1 + 0.461iT - 79T^{2}
83 110.9T+83T2 1 - 10.9T + 83T^{2}
89 1+7.02iT89T2 1 + 7.02iT - 89T^{2}
97 10.185iT97T2 1 - 0.185iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.974221190791594698385576227227, −9.014614757677361745339236335175, −8.314438975265574071866214795018, −7.64269914486441582319086563494, −6.97693236464052709904971093416, −5.87328537060739947108711748792, −4.75520015346138953698494004948, −3.52728377581674454598404043356, −3.15231887217468327294781574358, −2.10229250721194179269481334841, 1.71261683136366183297568567854, 2.30459185909738030456326848123, 3.62848167897110850129297304236, 4.14051130784717188158348762433, 5.14674801621780780245756109250, 6.54598300901966492662224188829, 7.30798714723281555662939104967, 8.435262765175801982664951315154, 9.019375259686658539043780201646, 9.853266004484854632008113056555

Graph of the ZZ-function along the critical line