L(s) = 1 | + (1.17 + 0.784i)2-s + 2.99·3-s + (0.767 + 1.84i)4-s + i·5-s + (3.52 + 2.35i)6-s + (−0.546 + 2.77i)8-s + 5.98·9-s + (−0.784 + 1.17i)10-s − 2.23i·11-s + (2.30 + 5.53i)12-s − 3.17i·13-s + 2.99i·15-s + (−2.82 + 2.83i)16-s − 3.44i·17-s + (7.04 + 4.70i)18-s − 2.05·19-s + ⋯ |
L(s) = 1 | + (0.831 + 0.555i)2-s + 1.73·3-s + (0.383 + 0.923i)4-s + 0.447i·5-s + (1.43 + 0.960i)6-s + (−0.193 + 0.981i)8-s + 1.99·9-s + (−0.248 + 0.372i)10-s − 0.674i·11-s + (0.664 + 1.59i)12-s − 0.879i·13-s + 0.774i·15-s + (−0.705 + 0.708i)16-s − 0.835i·17-s + (1.66 + 1.10i)18-s − 0.470·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.446 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.446 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.75951 + 2.32501i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.75951 + 2.32501i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.17 - 0.784i)T \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 2.99T + 3T^{2} \) |
| 11 | \( 1 + 2.23iT - 11T^{2} \) |
| 13 | \( 1 + 3.17iT - 13T^{2} \) |
| 17 | \( 1 + 3.44iT - 17T^{2} \) |
| 19 | \( 1 + 2.05T + 19T^{2} \) |
| 23 | \( 1 - 2.66iT - 23T^{2} \) |
| 29 | \( 1 + 7.38T + 29T^{2} \) |
| 31 | \( 1 - 4.89T + 31T^{2} \) |
| 37 | \( 1 + 11.1T + 37T^{2} \) |
| 41 | \( 1 + 1.46iT - 41T^{2} \) |
| 43 | \( 1 - 9.95iT - 43T^{2} \) |
| 47 | \( 1 + 6.12T + 47T^{2} \) |
| 53 | \( 1 - 4.65T + 53T^{2} \) |
| 59 | \( 1 - 7.11T + 59T^{2} \) |
| 61 | \( 1 - 2.53iT - 61T^{2} \) |
| 67 | \( 1 + 0.0527iT - 67T^{2} \) |
| 71 | \( 1 - 0.212iT - 71T^{2} \) |
| 73 | \( 1 + 14.8iT - 73T^{2} \) |
| 79 | \( 1 + 0.461iT - 79T^{2} \) |
| 83 | \( 1 - 10.9T + 83T^{2} \) |
| 89 | \( 1 + 7.02iT - 89T^{2} \) |
| 97 | \( 1 - 0.185iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.974221190791594698385576227227, −9.014614757677361745339236335175, −8.314438975265574071866214795018, −7.64269914486441582319086563494, −6.97693236464052709904971093416, −5.87328537060739947108711748792, −4.75520015346138953698494004948, −3.52728377581674454598404043356, −3.15231887217468327294781574358, −2.10229250721194179269481334841,
1.71261683136366183297568567854, 2.30459185909738030456326848123, 3.62848167897110850129297304236, 4.14051130784717188158348762433, 5.14674801621780780245756109250, 6.54598300901966492662224188829, 7.30798714723281555662939104967, 8.435262765175801982664951315154, 9.019375259686658539043780201646, 9.853266004484854632008113056555