L(s) = 1 | + (0.0982 + 1.41i)2-s + 0.662·3-s + (−1.98 + 0.277i)4-s + i·5-s + (0.0650 + 0.934i)6-s + (−0.585 − 2.76i)8-s − 2.56·9-s + (−1.41 + 0.0982i)10-s − 3.61i·11-s + (−1.31 + 0.183i)12-s − 5.83i·13-s + 0.662i·15-s + (3.84 − 1.09i)16-s − 1.36i·17-s + (−0.251 − 3.61i)18-s − 4.09·19-s + ⋯ |
L(s) = 1 | + (0.0694 + 0.997i)2-s + 0.382·3-s + (−0.990 + 0.138i)4-s + 0.447i·5-s + (0.0265 + 0.381i)6-s + (−0.207 − 0.978i)8-s − 0.853·9-s + (−0.446 + 0.0310i)10-s − 1.08i·11-s + (−0.378 + 0.0530i)12-s − 1.61i·13-s + 0.171i·15-s + (0.961 − 0.274i)16-s − 0.331i·17-s + (−0.0593 − 0.851i)18-s − 0.939·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.753 + 0.657i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.753 + 0.657i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.864521 - 0.324417i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.864521 - 0.324417i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.0982 - 1.41i)T \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 0.662T + 3T^{2} \) |
| 11 | \( 1 + 3.61iT - 11T^{2} \) |
| 13 | \( 1 + 5.83iT - 13T^{2} \) |
| 17 | \( 1 + 1.36iT - 17T^{2} \) |
| 19 | \( 1 + 4.09T + 19T^{2} \) |
| 23 | \( 1 + 3.24iT - 23T^{2} \) |
| 29 | \( 1 - 5.19T + 29T^{2} \) |
| 31 | \( 1 + 8.86T + 31T^{2} \) |
| 37 | \( 1 - 10.7T + 37T^{2} \) |
| 41 | \( 1 - 0.832iT - 41T^{2} \) |
| 43 | \( 1 - 3.10iT - 43T^{2} \) |
| 47 | \( 1 + 6.89T + 47T^{2} \) |
| 53 | \( 1 + 7.41T + 53T^{2} \) |
| 59 | \( 1 - 7.47T + 59T^{2} \) |
| 61 | \( 1 + 1.48iT - 61T^{2} \) |
| 67 | \( 1 + 2.53iT - 67T^{2} \) |
| 71 | \( 1 + 3.52iT - 71T^{2} \) |
| 73 | \( 1 + 5.16iT - 73T^{2} \) |
| 79 | \( 1 + 11.3iT - 79T^{2} \) |
| 83 | \( 1 + 6.49T + 83T^{2} \) |
| 89 | \( 1 + 9.39iT - 89T^{2} \) |
| 97 | \( 1 - 0.343iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.717688034369685823305318171171, −8.721828084573625508373196014596, −8.216436227895960406437928796520, −7.54733335521393722227974163326, −6.29663833204245101820586208191, −5.86373655145194872235082996084, −4.83290669691920308001160929796, −3.50227054285996059179940298766, −2.80629527809289081558857306607, −0.39056176151843133378241456168,
1.66490217532702041744037573131, 2.47998723324538917069583148863, 3.85266811484609782037519384387, 4.50629766151454209041521897525, 5.53093503210503769265152016513, 6.68022048338221195889249805920, 7.903437322899075400436857862035, 8.721529945988737530962508810220, 9.335286087017120218522891039203, 9.948085475115944419044407743682