L(s) = 1 | + (0.0982 + 1.41i)2-s + 0.662·3-s + (−1.98 + 0.277i)4-s + i·5-s + (0.0650 + 0.934i)6-s + (−0.585 − 2.76i)8-s − 2.56·9-s + (−1.41 + 0.0982i)10-s − 3.61i·11-s + (−1.31 + 0.183i)12-s − 5.83i·13-s + 0.662i·15-s + (3.84 − 1.09i)16-s − 1.36i·17-s + (−0.251 − 3.61i)18-s − 4.09·19-s + ⋯ |
L(s) = 1 | + (0.0694 + 0.997i)2-s + 0.382·3-s + (−0.990 + 0.138i)4-s + 0.447i·5-s + (0.0265 + 0.381i)6-s + (−0.207 − 0.978i)8-s − 0.853·9-s + (−0.446 + 0.0310i)10-s − 1.08i·11-s + (−0.378 + 0.0530i)12-s − 1.61i·13-s + 0.171i·15-s + (0.961 − 0.274i)16-s − 0.331i·17-s + (−0.0593 − 0.851i)18-s − 0.939·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.753+0.657i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.753+0.657i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.753+0.657i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.753+0.657i)
|
Particular Values
L(1) |
≈ |
0.864521−0.324417i |
L(21) |
≈ |
0.864521−0.324417i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.0982−1.41i)T |
| 5 | 1−iT |
| 7 | 1 |
good | 3 | 1−0.662T+3T2 |
| 11 | 1+3.61iT−11T2 |
| 13 | 1+5.83iT−13T2 |
| 17 | 1+1.36iT−17T2 |
| 19 | 1+4.09T+19T2 |
| 23 | 1+3.24iT−23T2 |
| 29 | 1−5.19T+29T2 |
| 31 | 1+8.86T+31T2 |
| 37 | 1−10.7T+37T2 |
| 41 | 1−0.832iT−41T2 |
| 43 | 1−3.10iT−43T2 |
| 47 | 1+6.89T+47T2 |
| 53 | 1+7.41T+53T2 |
| 59 | 1−7.47T+59T2 |
| 61 | 1+1.48iT−61T2 |
| 67 | 1+2.53iT−67T2 |
| 71 | 1+3.52iT−71T2 |
| 73 | 1+5.16iT−73T2 |
| 79 | 1+11.3iT−79T2 |
| 83 | 1+6.49T+83T2 |
| 89 | 1+9.39iT−89T2 |
| 97 | 1−0.343iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.717688034369685823305318171171, −8.721828084573625508373196014596, −8.216436227895960406437928796520, −7.54733335521393722227974163326, −6.29663833204245101820586208191, −5.86373655145194872235082996084, −4.83290669691920308001160929796, −3.50227054285996059179940298766, −2.80629527809289081558857306607, −0.39056176151843133378241456168,
1.66490217532702041744037573131, 2.47998723324538917069583148863, 3.85266811484609782037519384387, 4.50629766151454209041521897525, 5.53093503210503769265152016513, 6.68022048338221195889249805920, 7.903437322899075400436857862035, 8.721529945988737530962508810220, 9.335286087017120218522891039203, 9.948085475115944419044407743682