L(s) = 1 | + (1.39 + 0.226i)2-s + 1.79·3-s + (1.89 + 0.632i)4-s + i·5-s + (2.49 + 0.405i)6-s + (2.50 + 1.31i)8-s + 0.206·9-s + (−0.226 + 1.39i)10-s − 4.23i·11-s + (3.39 + 1.13i)12-s + 2.98i·13-s + 1.79i·15-s + (3.19 + 2.40i)16-s + 2.21i·17-s + (0.288 + 0.0468i)18-s + 4.56·19-s + ⋯ |
L(s) = 1 | + (0.987 + 0.160i)2-s + 1.03·3-s + (0.948 + 0.316i)4-s + 0.447i·5-s + (1.02 + 0.165i)6-s + (0.885 + 0.464i)8-s + 0.0689·9-s + (−0.0716 + 0.441i)10-s − 1.27i·11-s + (0.980 + 0.327i)12-s + 0.827i·13-s + 0.462i·15-s + (0.799 + 0.600i)16-s + 0.537i·17-s + (0.0680 + 0.0110i)18-s + 1.04·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.860 - 0.509i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.860 - 0.509i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.96824 + 1.08780i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.96824 + 1.08780i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.39 - 0.226i)T \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 1.79T + 3T^{2} \) |
| 11 | \( 1 + 4.23iT - 11T^{2} \) |
| 13 | \( 1 - 2.98iT - 13T^{2} \) |
| 17 | \( 1 - 2.21iT - 17T^{2} \) |
| 19 | \( 1 - 4.56T + 19T^{2} \) |
| 23 | \( 1 + 2.05iT - 23T^{2} \) |
| 29 | \( 1 - 6.42T + 29T^{2} \) |
| 31 | \( 1 + 2.40T + 31T^{2} \) |
| 37 | \( 1 + 4.32T + 37T^{2} \) |
| 41 | \( 1 - 4.88iT - 41T^{2} \) |
| 43 | \( 1 + 12.3iT - 43T^{2} \) |
| 47 | \( 1 + 6.76T + 47T^{2} \) |
| 53 | \( 1 + 12.8T + 53T^{2} \) |
| 59 | \( 1 + 13.9T + 59T^{2} \) |
| 61 | \( 1 - 0.0226iT - 61T^{2} \) |
| 67 | \( 1 + 5.06iT - 67T^{2} \) |
| 71 | \( 1 - 4.07iT - 71T^{2} \) |
| 73 | \( 1 - 3.33iT - 73T^{2} \) |
| 79 | \( 1 + 3.62iT - 79T^{2} \) |
| 83 | \( 1 - 11.7T + 83T^{2} \) |
| 89 | \( 1 + 16.6iT - 89T^{2} \) |
| 97 | \( 1 + 12.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16764493346148005069741531365, −9.017365630627522458215342514510, −8.314549720793111438702563586632, −7.54232001329272183397345480185, −6.55687832398514942469006964213, −5.83457806615879956443027780755, −4.68448410517532051367686299802, −3.46145819099473033641962933345, −3.09038327291096125125521203664, −1.85830878008574147021592834847,
1.54981500922309939627542348029, 2.73764181455946898719105299961, 3.44940502504428906989669175258, 4.65862194989030031197992411903, 5.29018292342399297706462270067, 6.46936660953977215787787552530, 7.56775209278982203751034904757, 7.978878805386600797134541033374, 9.299626347242446577075661180804, 9.790949367706515258173616923898