L(s) = 1 | + (1.39 + 0.226i)2-s + 1.79·3-s + (1.89 + 0.632i)4-s + i·5-s + (2.49 + 0.405i)6-s + (2.50 + 1.31i)8-s + 0.206·9-s + (−0.226 + 1.39i)10-s − 4.23i·11-s + (3.39 + 1.13i)12-s + 2.98i·13-s + 1.79i·15-s + (3.19 + 2.40i)16-s + 2.21i·17-s + (0.288 + 0.0468i)18-s + 4.56·19-s + ⋯ |
L(s) = 1 | + (0.987 + 0.160i)2-s + 1.03·3-s + (0.948 + 0.316i)4-s + 0.447i·5-s + (1.02 + 0.165i)6-s + (0.885 + 0.464i)8-s + 0.0689·9-s + (−0.0716 + 0.441i)10-s − 1.27i·11-s + (0.980 + 0.327i)12-s + 0.827i·13-s + 0.462i·15-s + (0.799 + 0.600i)16-s + 0.537i·17-s + (0.0680 + 0.0110i)18-s + 1.04·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.860−0.509i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.860−0.509i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.860−0.509i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.860−0.509i)
|
Particular Values
L(1) |
≈ |
3.96824+1.08780i |
L(21) |
≈ |
3.96824+1.08780i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.39−0.226i)T |
| 5 | 1−iT |
| 7 | 1 |
good | 3 | 1−1.79T+3T2 |
| 11 | 1+4.23iT−11T2 |
| 13 | 1−2.98iT−13T2 |
| 17 | 1−2.21iT−17T2 |
| 19 | 1−4.56T+19T2 |
| 23 | 1+2.05iT−23T2 |
| 29 | 1−6.42T+29T2 |
| 31 | 1+2.40T+31T2 |
| 37 | 1+4.32T+37T2 |
| 41 | 1−4.88iT−41T2 |
| 43 | 1+12.3iT−43T2 |
| 47 | 1+6.76T+47T2 |
| 53 | 1+12.8T+53T2 |
| 59 | 1+13.9T+59T2 |
| 61 | 1−0.0226iT−61T2 |
| 67 | 1+5.06iT−67T2 |
| 71 | 1−4.07iT−71T2 |
| 73 | 1−3.33iT−73T2 |
| 79 | 1+3.62iT−79T2 |
| 83 | 1−11.7T+83T2 |
| 89 | 1+16.6iT−89T2 |
| 97 | 1+12.0iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.16764493346148005069741531365, −9.017365630627522458215342514510, −8.314549720793111438702563586632, −7.54232001329272183397345480185, −6.55687832398514942469006964213, −5.83457806615879956443027780755, −4.68448410517532051367686299802, −3.46145819099473033641962933345, −3.09038327291096125125521203664, −1.85830878008574147021592834847,
1.54981500922309939627542348029, 2.73764181455946898719105299961, 3.44940502504428906989669175258, 4.65862194989030031197992411903, 5.29018292342399297706462270067, 6.46936660953977215787787552530, 7.56775209278982203751034904757, 7.978878805386600797134541033374, 9.299626347242446577075661180804, 9.790949367706515258173616923898