L(s) = 1 | + (−1.40 − 0.153i)2-s + 3.02·3-s + (1.95 + 0.432i)4-s + i·5-s + (−4.25 − 0.465i)6-s + (−2.67 − 0.908i)8-s + 6.16·9-s + (0.153 − 1.40i)10-s + 1.19i·11-s + (5.91 + 1.30i)12-s + 4.83i·13-s + 3.02i·15-s + (3.62 + 1.68i)16-s − 2.54i·17-s + (−8.66 − 0.948i)18-s − 1.42·19-s + ⋯ |
L(s) = 1 | + (−0.994 − 0.108i)2-s + 1.74·3-s + (0.976 + 0.216i)4-s + 0.447i·5-s + (−1.73 − 0.190i)6-s + (−0.946 − 0.321i)8-s + 2.05·9-s + (0.0486 − 0.444i)10-s + 0.360i·11-s + (1.70 + 0.378i)12-s + 1.34i·13-s + 0.781i·15-s + (0.906 + 0.422i)16-s − 0.617i·17-s + (−2.04 − 0.223i)18-s − 0.326·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.802 - 0.596i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.802 - 0.596i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.82499 + 0.603782i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.82499 + 0.603782i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.40 + 0.153i)T \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 3.02T + 3T^{2} \) |
| 11 | \( 1 - 1.19iT - 11T^{2} \) |
| 13 | \( 1 - 4.83iT - 13T^{2} \) |
| 17 | \( 1 + 2.54iT - 17T^{2} \) |
| 19 | \( 1 + 1.42T + 19T^{2} \) |
| 23 | \( 1 - 5.80iT - 23T^{2} \) |
| 29 | \( 1 - 0.774T + 29T^{2} \) |
| 31 | \( 1 - 6.63T + 31T^{2} \) |
| 37 | \( 1 - 5.10T + 37T^{2} \) |
| 41 | \( 1 + 7.46iT - 41T^{2} \) |
| 43 | \( 1 - 1.38iT - 43T^{2} \) |
| 47 | \( 1 - 1.07T + 47T^{2} \) |
| 53 | \( 1 - 3.36T + 53T^{2} \) |
| 59 | \( 1 + 9.88T + 59T^{2} \) |
| 61 | \( 1 - 9.59iT - 61T^{2} \) |
| 67 | \( 1 + 10.5iT - 67T^{2} \) |
| 71 | \( 1 + 16.3iT - 71T^{2} \) |
| 73 | \( 1 + 0.107iT - 73T^{2} \) |
| 79 | \( 1 + 10.7iT - 79T^{2} \) |
| 83 | \( 1 + 15.8T + 83T^{2} \) |
| 89 | \( 1 + 3.94iT - 89T^{2} \) |
| 97 | \( 1 - 8.71iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.699452760896838609656581637379, −9.260260649004423046289981085675, −8.589574969358358576251086177275, −7.63099769066164382859594522617, −7.21440965908745223949938195387, −6.26845818759827740025699580613, −4.41945013240139207296101046984, −3.38321593957579651047895187745, −2.49249105085878610547722807393, −1.65139828917744795609734882896,
1.08073342314369534068772876422, 2.43879404050506736045606454806, 3.12883115208931453676482963645, 4.37113252473887083197331699205, 5.84404508221303768162116907714, 6.88050943925133463975912911089, 7.985287711924022059502659491518, 8.259584976736282643070291294499, 8.823089255960218651505348901794, 9.830331712348421751662704564157