L(s) = 1 | + (−1.40 − 0.153i)2-s + 3.02·3-s + (1.95 + 0.432i)4-s + i·5-s + (−4.25 − 0.465i)6-s + (−2.67 − 0.908i)8-s + 6.16·9-s + (0.153 − 1.40i)10-s + 1.19i·11-s + (5.91 + 1.30i)12-s + 4.83i·13-s + 3.02i·15-s + (3.62 + 1.68i)16-s − 2.54i·17-s + (−8.66 − 0.948i)18-s − 1.42·19-s + ⋯ |
L(s) = 1 | + (−0.994 − 0.108i)2-s + 1.74·3-s + (0.976 + 0.216i)4-s + 0.447i·5-s + (−1.73 − 0.190i)6-s + (−0.946 − 0.321i)8-s + 2.05·9-s + (0.0486 − 0.444i)10-s + 0.360i·11-s + (1.70 + 0.378i)12-s + 1.34i·13-s + 0.781i·15-s + (0.906 + 0.422i)16-s − 0.617i·17-s + (−2.04 − 0.223i)18-s − 0.326·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.802−0.596i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.802−0.596i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.802−0.596i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.802−0.596i)
|
Particular Values
L(1) |
≈ |
1.82499+0.603782i |
L(21) |
≈ |
1.82499+0.603782i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.40+0.153i)T |
| 5 | 1−iT |
| 7 | 1 |
good | 3 | 1−3.02T+3T2 |
| 11 | 1−1.19iT−11T2 |
| 13 | 1−4.83iT−13T2 |
| 17 | 1+2.54iT−17T2 |
| 19 | 1+1.42T+19T2 |
| 23 | 1−5.80iT−23T2 |
| 29 | 1−0.774T+29T2 |
| 31 | 1−6.63T+31T2 |
| 37 | 1−5.10T+37T2 |
| 41 | 1+7.46iT−41T2 |
| 43 | 1−1.38iT−43T2 |
| 47 | 1−1.07T+47T2 |
| 53 | 1−3.36T+53T2 |
| 59 | 1+9.88T+59T2 |
| 61 | 1−9.59iT−61T2 |
| 67 | 1+10.5iT−67T2 |
| 71 | 1+16.3iT−71T2 |
| 73 | 1+0.107iT−73T2 |
| 79 | 1+10.7iT−79T2 |
| 83 | 1+15.8T+83T2 |
| 89 | 1+3.94iT−89T2 |
| 97 | 1−8.71iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.699452760896838609656581637379, −9.260260649004423046289981085675, −8.589574969358358576251086177275, −7.63099769066164382859594522617, −7.21440965908745223949938195387, −6.26845818759827740025699580613, −4.41945013240139207296101046984, −3.38321593957579651047895187745, −2.49249105085878610547722807393, −1.65139828917744795609734882896,
1.08073342314369534068772876422, 2.43879404050506736045606454806, 3.12883115208931453676482963645, 4.37113252473887083197331699205, 5.84404508221303768162116907714, 6.88050943925133463975912911089, 7.985287711924022059502659491518, 8.259584976736282643070291294499, 8.823089255960218651505348901794, 9.830331712348421751662704564157