Properties

Label 2-980-28.27-c1-0-30
Degree 22
Conductor 980980
Sign 0.5430.839i0.543 - 0.839i
Analytic cond. 7.825337.82533
Root an. cond. 2.797382.79738
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0982 + 1.41i)2-s − 0.662·3-s + (−1.98 + 0.277i)4-s i·5-s + (−0.0650 − 0.934i)6-s + (−0.585 − 2.76i)8-s − 2.56·9-s + (1.41 − 0.0982i)10-s − 3.61i·11-s + (1.31 − 0.183i)12-s + 5.83i·13-s + 0.662i·15-s + (3.84 − 1.09i)16-s + 1.36i·17-s + (−0.251 − 3.61i)18-s + 4.09·19-s + ⋯
L(s)  = 1  + (0.0694 + 0.997i)2-s − 0.382·3-s + (−0.990 + 0.138i)4-s − 0.447i·5-s + (−0.0265 − 0.381i)6-s + (−0.207 − 0.978i)8-s − 0.853·9-s + (0.446 − 0.0310i)10-s − 1.08i·11-s + (0.378 − 0.0530i)12-s + 1.61i·13-s + 0.171i·15-s + (0.961 − 0.274i)16-s + 0.331i·17-s + (−0.0593 − 0.851i)18-s + 0.939·19-s + ⋯

Functional equation

Λ(s)=(980s/2ΓC(s)L(s)=((0.5430.839i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.543 - 0.839i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(980s/2ΓC(s+1/2)L(s)=((0.5430.839i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.543 - 0.839i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 980980    =    225722^{2} \cdot 5 \cdot 7^{2}
Sign: 0.5430.839i0.543 - 0.839i
Analytic conductor: 7.825337.82533
Root analytic conductor: 2.797382.79738
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ980(391,)\chi_{980} (391, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 980, ( :1/2), 0.5430.839i)(2,\ 980,\ (\ :1/2),\ 0.543 - 0.839i)

Particular Values

L(1)L(1) \approx 1.01250+0.550604i1.01250 + 0.550604i
L(12)L(\frac12) \approx 1.01250+0.550604i1.01250 + 0.550604i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.09821.41i)T 1 + (-0.0982 - 1.41i)T
5 1+iT 1 + iT
7 1 1
good3 1+0.662T+3T2 1 + 0.662T + 3T^{2}
11 1+3.61iT11T2 1 + 3.61iT - 11T^{2}
13 15.83iT13T2 1 - 5.83iT - 13T^{2}
17 11.36iT17T2 1 - 1.36iT - 17T^{2}
19 14.09T+19T2 1 - 4.09T + 19T^{2}
23 1+3.24iT23T2 1 + 3.24iT - 23T^{2}
29 15.19T+29T2 1 - 5.19T + 29T^{2}
31 18.86T+31T2 1 - 8.86T + 31T^{2}
37 110.7T+37T2 1 - 10.7T + 37T^{2}
41 1+0.832iT41T2 1 + 0.832iT - 41T^{2}
43 13.10iT43T2 1 - 3.10iT - 43T^{2}
47 16.89T+47T2 1 - 6.89T + 47T^{2}
53 1+7.41T+53T2 1 + 7.41T + 53T^{2}
59 1+7.47T+59T2 1 + 7.47T + 59T^{2}
61 11.48iT61T2 1 - 1.48iT - 61T^{2}
67 1+2.53iT67T2 1 + 2.53iT - 67T^{2}
71 1+3.52iT71T2 1 + 3.52iT - 71T^{2}
73 15.16iT73T2 1 - 5.16iT - 73T^{2}
79 1+11.3iT79T2 1 + 11.3iT - 79T^{2}
83 16.49T+83T2 1 - 6.49T + 83T^{2}
89 19.39iT89T2 1 - 9.39iT - 89T^{2}
97 1+0.343iT97T2 1 + 0.343iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.866003800276742497857474468523, −9.021286891217894165737965485876, −8.477709469942706503498909496746, −7.66963930167735805265067247749, −6.33562720281422423908432659348, −6.16320983634546927950327059566, −4.98265523066639655396110693941, −4.26913829550570858415638577945, −2.95794383821513887880965228642, −0.851672199187797611040417859270, 0.866690878850131891519749437811, 2.58275543880072277579566483207, 3.18812496556779823014574865856, 4.56301461383469073931401288837, 5.36604434017344638875691969258, 6.20085523775478189407557152200, 7.57280438259178861360793229185, 8.217785925043430178260648715829, 9.387832579491188085264425486875, 10.04324212873773308371455617112

Graph of the ZZ-function along the critical line