L(s) = 1 | + (−0.976 + 1.02i)2-s − 1.11·3-s + (−0.0916 − 1.99i)4-s − i·5-s + (1.08 − 1.13i)6-s + (2.13 + 1.85i)8-s − 1.76·9-s + (1.02 + 0.976i)10-s + 1.71i·11-s + (0.101 + 2.22i)12-s + 2.45i·13-s + 1.11i·15-s + (−3.98 + 0.366i)16-s − 6.21i·17-s + (1.72 − 1.80i)18-s + 0.216·19-s + ⋯ |
L(s) = 1 | + (−0.690 + 0.723i)2-s − 0.642·3-s + (−0.0458 − 0.998i)4-s − 0.447i·5-s + (0.443 − 0.464i)6-s + (0.753 + 0.656i)8-s − 0.587·9-s + (0.323 + 0.308i)10-s + 0.516i·11-s + (0.0294 + 0.641i)12-s + 0.682i·13-s + 0.287i·15-s + (−0.995 + 0.0915i)16-s − 1.50i·17-s + (0.405 − 0.424i)18-s + 0.0496·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.725 - 0.688i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.725 - 0.688i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.676083 + 0.269857i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.676083 + 0.269857i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.976 - 1.02i)T \) |
| 5 | \( 1 + iT \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 1.11T + 3T^{2} \) |
| 11 | \( 1 - 1.71iT - 11T^{2} \) |
| 13 | \( 1 - 2.45iT - 13T^{2} \) |
| 17 | \( 1 + 6.21iT - 17T^{2} \) |
| 19 | \( 1 - 0.216T + 19T^{2} \) |
| 23 | \( 1 - 6.56iT - 23T^{2} \) |
| 29 | \( 1 + 2.47T + 29T^{2} \) |
| 31 | \( 1 + 0.163T + 31T^{2} \) |
| 37 | \( 1 - 7.69T + 37T^{2} \) |
| 41 | \( 1 + 8.34iT - 41T^{2} \) |
| 43 | \( 1 - 1.89iT - 43T^{2} \) |
| 47 | \( 1 - 11.7T + 47T^{2} \) |
| 53 | \( 1 - 13.0T + 53T^{2} \) |
| 59 | \( 1 - 4.28T + 59T^{2} \) |
| 61 | \( 1 + 7.00iT - 61T^{2} \) |
| 67 | \( 1 - 5.17iT - 67T^{2} \) |
| 71 | \( 1 - 5.04iT - 71T^{2} \) |
| 73 | \( 1 - 7.61iT - 73T^{2} \) |
| 79 | \( 1 - 15.9iT - 79T^{2} \) |
| 83 | \( 1 - 5.47T + 83T^{2} \) |
| 89 | \( 1 - 1.78iT - 89T^{2} \) |
| 97 | \( 1 - 10.5iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.782300964512576161978367360000, −9.301442693751404294254735793320, −8.502311282169780382131056141130, −7.42298805762126748563729910630, −6.89876503348542375209896756499, −5.69119590849188556045558914300, −5.28479720196408038899267283925, −4.19995297559564467063223682289, −2.34656423077108842520966640066, −0.814977143771299697532100388009,
0.70135645215088026144002283737, 2.35094467339100054370109045033, 3.32801924900803614522287636659, 4.40155148710351467142479416817, 5.77392887461719931482281380318, 6.42621184441108168296708153430, 7.61035042892991348648639205167, 8.378695127186582378269080426837, 9.037954346340147061080255920562, 10.38539594375642733223045739467