L(s) = 1 | + (−0.976 + 1.02i)2-s − 1.11·3-s + (−0.0916 − 1.99i)4-s − i·5-s + (1.08 − 1.13i)6-s + (2.13 + 1.85i)8-s − 1.76·9-s + (1.02 + 0.976i)10-s + 1.71i·11-s + (0.101 + 2.22i)12-s + 2.45i·13-s + 1.11i·15-s + (−3.98 + 0.366i)16-s − 6.21i·17-s + (1.72 − 1.80i)18-s + 0.216·19-s + ⋯ |
L(s) = 1 | + (−0.690 + 0.723i)2-s − 0.642·3-s + (−0.0458 − 0.998i)4-s − 0.447i·5-s + (0.443 − 0.464i)6-s + (0.753 + 0.656i)8-s − 0.587·9-s + (0.323 + 0.308i)10-s + 0.516i·11-s + (0.0294 + 0.641i)12-s + 0.682i·13-s + 0.287i·15-s + (−0.995 + 0.0915i)16-s − 1.50i·17-s + (0.405 − 0.424i)18-s + 0.0496·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.725−0.688i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.725−0.688i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.725−0.688i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.725−0.688i)
|
Particular Values
L(1) |
≈ |
0.676083+0.269857i |
L(21) |
≈ |
0.676083+0.269857i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.976−1.02i)T |
| 5 | 1+iT |
| 7 | 1 |
good | 3 | 1+1.11T+3T2 |
| 11 | 1−1.71iT−11T2 |
| 13 | 1−2.45iT−13T2 |
| 17 | 1+6.21iT−17T2 |
| 19 | 1−0.216T+19T2 |
| 23 | 1−6.56iT−23T2 |
| 29 | 1+2.47T+29T2 |
| 31 | 1+0.163T+31T2 |
| 37 | 1−7.69T+37T2 |
| 41 | 1+8.34iT−41T2 |
| 43 | 1−1.89iT−43T2 |
| 47 | 1−11.7T+47T2 |
| 53 | 1−13.0T+53T2 |
| 59 | 1−4.28T+59T2 |
| 61 | 1+7.00iT−61T2 |
| 67 | 1−5.17iT−67T2 |
| 71 | 1−5.04iT−71T2 |
| 73 | 1−7.61iT−73T2 |
| 79 | 1−15.9iT−79T2 |
| 83 | 1−5.47T+83T2 |
| 89 | 1−1.78iT−89T2 |
| 97 | 1−10.5iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.782300964512576161978367360000, −9.301442693751404294254735793320, −8.502311282169780382131056141130, −7.42298805762126748563729910630, −6.89876503348542375209896756499, −5.69119590849188556045558914300, −5.28479720196408038899267283925, −4.19995297559564467063223682289, −2.34656423077108842520966640066, −0.814977143771299697532100388009,
0.70135645215088026144002283737, 2.35094467339100054370109045033, 3.32801924900803614522287636659, 4.40155148710351467142479416817, 5.77392887461719931482281380318, 6.42621184441108168296708153430, 7.61035042892991348648639205167, 8.378695127186582378269080426837, 9.037954346340147061080255920562, 10.38539594375642733223045739467