L(s) = 1 | + (1.17 + 0.784i)2-s − 2.99·3-s + (0.767 + 1.84i)4-s − i·5-s + (−3.52 − 2.35i)6-s + (−0.546 + 2.77i)8-s + 5.98·9-s + (0.784 − 1.17i)10-s − 2.23i·11-s + (−2.30 − 5.53i)12-s + 3.17i·13-s + 2.99i·15-s + (−2.82 + 2.83i)16-s + 3.44i·17-s + (7.04 + 4.70i)18-s + 2.05·19-s + ⋯ |
L(s) = 1 | + (0.831 + 0.555i)2-s − 1.73·3-s + (0.383 + 0.923i)4-s − 0.447i·5-s + (−1.43 − 0.960i)6-s + (−0.193 + 0.981i)8-s + 1.99·9-s + (0.248 − 0.372i)10-s − 0.674i·11-s + (−0.664 − 1.59i)12-s + 0.879i·13-s + 0.774i·15-s + (−0.705 + 0.708i)16-s + 0.835i·17-s + (1.66 + 1.10i)18-s + 0.470·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.949−0.314i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.949−0.314i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.949−0.314i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.949−0.314i)
|
Particular Values
L(1) |
≈ |
0.132916+0.824361i |
L(21) |
≈ |
0.132916+0.824361i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.17−0.784i)T |
| 5 | 1+iT |
| 7 | 1 |
good | 3 | 1+2.99T+3T2 |
| 11 | 1+2.23iT−11T2 |
| 13 | 1−3.17iT−13T2 |
| 17 | 1−3.44iT−17T2 |
| 19 | 1−2.05T+19T2 |
| 23 | 1−2.66iT−23T2 |
| 29 | 1+7.38T+29T2 |
| 31 | 1+4.89T+31T2 |
| 37 | 1+11.1T+37T2 |
| 41 | 1−1.46iT−41T2 |
| 43 | 1−9.95iT−43T2 |
| 47 | 1−6.12T+47T2 |
| 53 | 1−4.65T+53T2 |
| 59 | 1+7.11T+59T2 |
| 61 | 1+2.53iT−61T2 |
| 67 | 1+0.0527iT−67T2 |
| 71 | 1−0.212iT−71T2 |
| 73 | 1−14.8iT−73T2 |
| 79 | 1+0.461iT−79T2 |
| 83 | 1+10.9T+83T2 |
| 89 | 1−7.02iT−89T2 |
| 97 | 1+0.185iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.85230036360661118734562108348, −9.594332140048011157833369302602, −8.580816160976282103983759841109, −7.44492678665017593968998602868, −6.74008121142595906116120336398, −5.80301194002328497904525810061, −5.45647833632790441925321758347, −4.46300159390410103788749440403, −3.62267319303442031053311196107, −1.61950641206102807297606897023,
0.36191551942283257256459630992, 1.90109509951191267894198854107, 3.38554446507200618368307105033, 4.49143690051416194271405350471, 5.40448221682091403662557304794, 5.75946118034173763067453244437, 6.98418379003159912063262678272, 7.28682967920298782733457027361, 9.214157383662037860093830639089, 10.20276415212209195287531093926