L(s) = 1 | + (0.486 + 1.32i)2-s − 0.812·3-s + (−1.52 + 1.29i)4-s + i·5-s + (−0.395 − 1.07i)6-s + (−2.45 − 1.39i)8-s − 2.34·9-s + (−1.32 + 0.486i)10-s + 4.86i·11-s + (1.23 − 1.04i)12-s − 0.895i·13-s − 0.812i·15-s + (0.658 − 3.94i)16-s − 5.89i·17-s + (−1.13 − 3.10i)18-s − 2.91·19-s + ⋯ |
L(s) = 1 | + (0.344 + 0.938i)2-s − 0.468·3-s + (−0.763 + 0.646i)4-s + 0.447i·5-s + (−0.161 − 0.440i)6-s + (−0.869 − 0.494i)8-s − 0.780·9-s + (−0.419 + 0.153i)10-s + 1.46i·11-s + (0.357 − 0.302i)12-s − 0.248i·13-s − 0.209i·15-s + (0.164 − 0.986i)16-s − 1.42i·17-s + (−0.268 − 0.732i)18-s − 0.669·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.0110+0.999i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.0110+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.0110+0.999i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.0110+0.999i)
|
Particular Values
L(1) |
≈ |
0.0708303−0.0716161i |
L(21) |
≈ |
0.0708303−0.0716161i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.486−1.32i)T |
| 5 | 1−iT |
| 7 | 1 |
good | 3 | 1+0.812T+3T2 |
| 11 | 1−4.86iT−11T2 |
| 13 | 1+0.895iT−13T2 |
| 17 | 1+5.89iT−17T2 |
| 19 | 1+2.91T+19T2 |
| 23 | 1−1.56iT−23T2 |
| 29 | 1+9.73T+29T2 |
| 31 | 1−4.41T+31T2 |
| 37 | 1+1.82T+37T2 |
| 41 | 1+10.4iT−41T2 |
| 43 | 1+3.04iT−43T2 |
| 47 | 1+5.21T+47T2 |
| 53 | 1−0.179T+53T2 |
| 59 | 1+11.3T+59T2 |
| 61 | 1+6.15iT−61T2 |
| 67 | 1−7.79iT−67T2 |
| 71 | 1+8.38iT−71T2 |
| 73 | 1−8.78iT−73T2 |
| 79 | 1+3.63iT−79T2 |
| 83 | 1−2.03T+83T2 |
| 89 | 1−1.76iT−89T2 |
| 97 | 1−7.83iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.58471526023154811900696924218, −9.603471998370721119221547457816, −8.950917969718390866300426412741, −7.79348240674655613535863612952, −7.17798461985891934502947651254, −6.42172407338993400124422838130, −5.44281358937629575420176394081, −4.80889878654573018611653044913, −3.65731781569277731383444570397, −2.43135570976499798493576260411,
0.04360922744047861354344297945, 1.50942821092903267038002189601, 2.92774194773503904404176407926, 3.88145238182561010607809894552, 4.89282266744385152498137212138, 5.93455383928205352334314206388, 6.22324454970133621593438104233, 8.149666267574933546456038521942, 8.602147632217234237133894604947, 9.458454745378026668509883547113