L(s) = 1 | + (0.576 + 1.29i)2-s − 2.50i·3-s + (−1.33 + 1.48i)4-s + (−0.639 − 2.14i)5-s + (3.23 − 1.44i)6-s + (−2.69 − 0.867i)8-s − 3.25·9-s + (2.39 − 2.06i)10-s − 2.25i·11-s + (3.72 + 3.34i)12-s + 5.96·13-s + (−5.35 + 1.60i)15-s + (−0.430 − 3.97i)16-s − 2.00·17-s + (−1.87 − 4.20i)18-s − 7.81·19-s + ⋯ |
L(s) = 1 | + (0.407 + 0.913i)2-s − 1.44i·3-s + (−0.667 + 0.744i)4-s + (−0.286 − 0.958i)5-s + (1.31 − 0.588i)6-s + (−0.951 − 0.306i)8-s − 1.08·9-s + (0.758 − 0.651i)10-s − 0.678i·11-s + (1.07 + 0.964i)12-s + 1.65·13-s + (−1.38 + 0.413i)15-s + (−0.107 − 0.994i)16-s − 0.486·17-s + (−0.442 − 0.991i)18-s − 1.79·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.563+0.826i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.563+0.826i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.563+0.826i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(979,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.563+0.826i)
|
Particular Values
L(1) |
≈ |
0.513294−0.971196i |
L(21) |
≈ |
0.513294−0.971196i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.576−1.29i)T |
| 5 | 1+(0.639+2.14i)T |
| 7 | 1 |
good | 3 | 1+2.50iT−3T2 |
| 11 | 1+2.25iT−11T2 |
| 13 | 1−5.96T+13T2 |
| 17 | 1+2.00T+17T2 |
| 19 | 1+7.81T+19T2 |
| 23 | 1+2.99T+23T2 |
| 29 | 1+4.87T+29T2 |
| 31 | 1−1.49T+31T2 |
| 37 | 1−4.78iT−37T2 |
| 41 | 1+8.82iT−41T2 |
| 43 | 1−1.12T+43T2 |
| 47 | 1+9.56iT−47T2 |
| 53 | 1−7.06iT−53T2 |
| 59 | 1+11.4T+59T2 |
| 61 | 1−1.21iT−61T2 |
| 67 | 1−1.11T+67T2 |
| 71 | 1+8.40iT−71T2 |
| 73 | 1−5.88T+73T2 |
| 79 | 1+12.1iT−79T2 |
| 83 | 1−11.1iT−83T2 |
| 89 | 1+4.57iT−89T2 |
| 97 | 1−4.62T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.086237290280560096205240342783, −8.486161675275840401314420590718, −8.110022771448578019967839900690, −7.11869203574237884642899007496, −6.19306723121130080332764087099, −5.84054866289690574004259330790, −4.46888379026270986908809972769, −3.58153991434028228025157694986, −1.87621388459183671195776340888, −0.43466425106079064757259365859,
2.04795339327876747635332576480, 3.26912688452491026137182428282, 4.04906614969015281873735539230, 4.51015311967516595580254122778, 5.85737806572877580613530695699, 6.53083254216938357005322450035, 8.111044122814674633205098000043, 8.984597525063105224484870990876, 9.745465282309345429218557722985, 10.48340064459453319848845668038