L(s) = 1 | + (1.14 − 0.826i)2-s + 1.52i·3-s + (0.632 − 1.89i)4-s + (0.0967 − 2.23i)5-s + (1.25 + 1.74i)6-s + (−0.843 − 2.69i)8-s + 0.679·9-s + (−1.73 − 2.64i)10-s − 4.56i·11-s + (2.89 + 0.963i)12-s − 2.19·13-s + (3.40 + 0.147i)15-s + (−3.19 − 2.40i)16-s − 6.22·17-s + (0.779 − 0.561i)18-s + 3.83·19-s + ⋯ |
L(s) = 1 | + (0.811 − 0.584i)2-s + 0.879i·3-s + (0.316 − 0.948i)4-s + (0.0432 − 0.999i)5-s + (0.514 + 0.713i)6-s + (−0.298 − 0.954i)8-s + 0.226·9-s + (−0.549 − 0.835i)10-s − 1.37i·11-s + (0.834 + 0.278i)12-s − 0.608·13-s + (0.878 + 0.0380i)15-s + (−0.799 − 0.600i)16-s − 1.50·17-s + (0.183 − 0.132i)18-s + 0.879·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.206+0.978i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.206+0.978i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.206+0.978i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(979,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.206+0.978i)
|
Particular Values
L(1) |
≈ |
1.47069−1.81329i |
L(21) |
≈ |
1.47069−1.81329i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.14+0.826i)T |
| 5 | 1+(−0.0967+2.23i)T |
| 7 | 1 |
good | 3 | 1−1.52iT−3T2 |
| 11 | 1+4.56iT−11T2 |
| 13 | 1+2.19T+13T2 |
| 17 | 1+6.22T+17T2 |
| 19 | 1−3.83T+19T2 |
| 23 | 1−0.430T+23T2 |
| 29 | 1+0.473T+29T2 |
| 31 | 1−7.59T+31T2 |
| 37 | 1+8.44iT−37T2 |
| 41 | 1+1.45iT−41T2 |
| 43 | 1−8.58T+43T2 |
| 47 | 1+4.48iT−47T2 |
| 53 | 1−9.23iT−53T2 |
| 59 | 1+3.13T+59T2 |
| 61 | 1+5.71iT−61T2 |
| 67 | 1−14.9T+67T2 |
| 71 | 1−4.57iT−71T2 |
| 73 | 1−12.2T+73T2 |
| 79 | 1−6.20iT−79T2 |
| 83 | 1−7.69iT−83T2 |
| 89 | 1−9.32iT−89T2 |
| 97 | 1+9.05T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.707014206296338958331955654332, −9.287328764027595688252145073942, −8.376659648928959368317311451859, −7.04913345054060719718509125250, −5.90258789872149738143769009450, −5.15304697045377402762981261006, −4.40063816118343567452818661534, −3.67219821074116647303507570455, −2.40527950664686895965153624787, −0.825828449723787310694362672260,
2.02134258650452765597460491954, 2.78980971191265311540899910876, 4.18884539763060867832554047917, 4.96372902290262285551229615499, 6.36071163432435031720456734047, 6.77370063842249558271217520304, 7.42540235601784689150584550247, 8.050881579850480061489194841235, 9.422083344440308807724647626924, 10.25044911313293856488680672593