L(s) = 1 | + (−1.36 − 0.385i)2-s − 0.423i·3-s + (1.70 + 1.04i)4-s + (1.74 − 1.39i)5-s + (−0.163 + 0.576i)6-s + (−1.91 − 2.08i)8-s + 2.82·9-s + (−2.91 + 1.23i)10-s − 4.89i·11-s + (0.443 − 0.721i)12-s + 2.54·13-s + (−0.591 − 0.738i)15-s + (1.80 + 3.57i)16-s − 5.11·17-s + (−3.83 − 1.08i)18-s + 6.26·19-s + ⋯ |
L(s) = 1 | + (−0.962 − 0.272i)2-s − 0.244i·3-s + (0.851 + 0.524i)4-s + (0.780 − 0.625i)5-s + (−0.0665 + 0.235i)6-s + (−0.676 − 0.736i)8-s + 0.940·9-s + (−0.921 + 0.388i)10-s − 1.47i·11-s + (0.128 − 0.208i)12-s + 0.706·13-s + (−0.152 − 0.190i)15-s + (0.450 + 0.892i)16-s − 1.24·17-s + (−0.904 − 0.256i)18-s + 1.43·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.0335+0.999i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.0335+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.0335+0.999i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(979,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.0335+0.999i)
|
Particular Values
L(1) |
≈ |
0.873939−0.903739i |
L(21) |
≈ |
0.873939−0.903739i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.36+0.385i)T |
| 5 | 1+(−1.74+1.39i)T |
| 7 | 1 |
good | 3 | 1+0.423iT−3T2 |
| 11 | 1+4.89iT−11T2 |
| 13 | 1−2.54T+13T2 |
| 17 | 1+5.11T+17T2 |
| 19 | 1−6.26T+19T2 |
| 23 | 1+4.63T+23T2 |
| 29 | 1+1.88T+29T2 |
| 31 | 1+1.47T+31T2 |
| 37 | 1+2.35iT−37T2 |
| 41 | 1−7.05iT−41T2 |
| 43 | 1−10.7T+43T2 |
| 47 | 1−12.2iT−47T2 |
| 53 | 1+2.23iT−53T2 |
| 59 | 1+5.68T+59T2 |
| 61 | 1+3.87iT−61T2 |
| 67 | 1+0.889T+67T2 |
| 71 | 1+14.3iT−71T2 |
| 73 | 1+7.87T+73T2 |
| 79 | 1+4.63iT−79T2 |
| 83 | 1+4.32iT−83T2 |
| 89 | 1−2.18iT−89T2 |
| 97 | 1−3.42T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.528805821842074310998471900524, −9.151473384117175381132148060550, −8.241057642095467474362910856091, −7.50715412446562702709687554763, −6.33678985323859092000106994561, −5.84859617521673763669525145826, −4.34978878799297992224456288488, −3.12892807189809310164980063130, −1.82564796081963552995737426588, −0.853044336688105131540031543319,
1.55115276311505078982875549075, 2.40694537702422390976874698185, 3.94653126336625394791384742158, 5.20785998500267038651613858071, 6.16734502263099378833724428411, 7.12984292618136733836354877023, 7.40208583894422020001389340684, 8.788963126707178725299088630041, 9.525720080845937124524649598245, 10.05184807462169006539803573940