Properties

Label 2-980-140.139-c1-0-79
Degree 22
Conductor 980980
Sign 0.995+0.0982i0.995 + 0.0982i
Analytic cond. 7.825337.82533
Root an. cond. 2.797382.79738
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.38 + 0.295i)2-s − 1.66i·3-s + (1.82 + 0.817i)4-s + (2.22 + 0.220i)5-s + (0.491 − 2.29i)6-s + (2.28 + 1.67i)8-s + 0.236·9-s + (3.01 + 0.962i)10-s + 4.81i·11-s + (1.35 − 3.03i)12-s − 2.14·13-s + (0.366 − 3.69i)15-s + (2.66 + 2.98i)16-s + 5.02·17-s + (0.326 + 0.0698i)18-s − 1.36·19-s + ⋯
L(s)  = 1  + (0.977 + 0.209i)2-s − 0.959i·3-s + (0.912 + 0.408i)4-s + (0.995 + 0.0986i)5-s + (0.200 − 0.938i)6-s + (0.807 + 0.590i)8-s + 0.0787·9-s + (0.952 + 0.304i)10-s + 1.45i·11-s + (0.392 − 0.875i)12-s − 0.594·13-s + (0.0946 − 0.955i)15-s + (0.665 + 0.746i)16-s + 1.21·17-s + (0.0770 + 0.0164i)18-s − 0.312·19-s + ⋯

Functional equation

Λ(s)=(980s/2ΓC(s)L(s)=((0.995+0.0982i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0982i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(980s/2ΓC(s+1/2)L(s)=((0.995+0.0982i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 + 0.0982i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 980980    =    225722^{2} \cdot 5 \cdot 7^{2}
Sign: 0.995+0.0982i0.995 + 0.0982i
Analytic conductor: 7.825337.82533
Root analytic conductor: 2.797382.79738
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ980(979,)\chi_{980} (979, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 980, ( :1/2), 0.995+0.0982i)(2,\ 980,\ (\ :1/2),\ 0.995 + 0.0982i)

Particular Values

L(1)L(1) \approx 3.588020.176689i3.58802 - 0.176689i
L(12)L(\frac12) \approx 3.588020.176689i3.58802 - 0.176689i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.380.295i)T 1 + (-1.38 - 0.295i)T
5 1+(2.220.220i)T 1 + (-2.22 - 0.220i)T
7 1 1
good3 1+1.66iT3T2 1 + 1.66iT - 3T^{2}
11 14.81iT11T2 1 - 4.81iT - 11T^{2}
13 1+2.14T+13T2 1 + 2.14T + 13T^{2}
17 15.02T+17T2 1 - 5.02T + 17T^{2}
19 1+1.36T+19T2 1 + 1.36T + 19T^{2}
23 1+5.18T+23T2 1 + 5.18T + 23T^{2}
29 1+6.43T+29T2 1 + 6.43T + 29T^{2}
31 1+4.62T+31T2 1 + 4.62T + 31T^{2}
37 1+9.82iT37T2 1 + 9.82iT - 37T^{2}
41 1+4.71iT41T2 1 + 4.71iT - 41T^{2}
43 1+0.141T+43T2 1 + 0.141T + 43T^{2}
47 1+2.55iT47T2 1 + 2.55iT - 47T^{2}
53 14.84iT53T2 1 - 4.84iT - 53T^{2}
59 1+14.1T+59T2 1 + 14.1T + 59T^{2}
61 1+10.1iT61T2 1 + 10.1iT - 61T^{2}
67 19.64T+67T2 1 - 9.64T + 67T^{2}
71 1+9.58iT71T2 1 + 9.58iT - 71T^{2}
73 1+1.67T+73T2 1 + 1.67T + 73T^{2}
79 1+11.8iT79T2 1 + 11.8iT - 79T^{2}
83 1+0.811iT83T2 1 + 0.811iT - 83T^{2}
89 116.0iT89T2 1 - 16.0iT - 89T^{2}
97 11.76T+97T2 1 - 1.76T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.05532637526589518617796325310, −9.285637756814458982618912966622, −7.65160036644781704879301493188, −7.46653740517553948206642635565, −6.51641195975747280694047204974, −5.74200232584618368704561681617, −4.89871603092514844148512813012, −3.74543591275488929093842542381, −2.22032711936415080555945160840, −1.79718388630141139602623651953, 1.51668331080445335445414894223, 2.91765180050905360426082725672, 3.73022051128516001545653514066, 4.78334224037148177462912763743, 5.59577024403653414120460604442, 6.12020209320716014670980442669, 7.30887767122884159584079868589, 8.450628062825298781845394366710, 9.670184863883879296452123384477, 9.976519102351300494964615980161

Graph of the ZZ-function along the critical line