L(s) = 1 | + (1.36 + 0.385i)2-s + 0.423i·3-s + (1.70 + 1.04i)4-s + (−1.74 − 1.39i)5-s + (−0.163 + 0.576i)6-s + (1.91 + 2.08i)8-s + 2.82·9-s + (−1.83 − 2.57i)10-s − 4.89i·11-s + (−0.443 + 0.721i)12-s − 2.54·13-s + (0.591 − 0.738i)15-s + (1.80 + 3.57i)16-s + 5.11·17-s + (3.83 + 1.08i)18-s + 6.26·19-s + ⋯ |
L(s) = 1 | + (0.962 + 0.272i)2-s + 0.244i·3-s + (0.851 + 0.524i)4-s + (−0.780 − 0.625i)5-s + (−0.0665 + 0.235i)6-s + (0.676 + 0.736i)8-s + 0.940·9-s + (−0.580 − 0.814i)10-s − 1.47i·11-s + (−0.128 + 0.208i)12-s − 0.706·13-s + (0.152 − 0.190i)15-s + (0.450 + 0.892i)16-s + 1.24·17-s + (0.904 + 0.256i)18-s + 1.43·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.982−0.185i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.982−0.185i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.982−0.185i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(979,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.982−0.185i)
|
Particular Values
L(1) |
≈ |
2.84961+0.266501i |
L(21) |
≈ |
2.84961+0.266501i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.36−0.385i)T |
| 5 | 1+(1.74+1.39i)T |
| 7 | 1 |
good | 3 | 1−0.423iT−3T2 |
| 11 | 1+4.89iT−11T2 |
| 13 | 1+2.54T+13T2 |
| 17 | 1−5.11T+17T2 |
| 19 | 1−6.26T+19T2 |
| 23 | 1−4.63T+23T2 |
| 29 | 1+1.88T+29T2 |
| 31 | 1+1.47T+31T2 |
| 37 | 1−2.35iT−37T2 |
| 41 | 1−7.05iT−41T2 |
| 43 | 1+10.7T+43T2 |
| 47 | 1+12.2iT−47T2 |
| 53 | 1−2.23iT−53T2 |
| 59 | 1+5.68T+59T2 |
| 61 | 1+3.87iT−61T2 |
| 67 | 1−0.889T+67T2 |
| 71 | 1+14.3iT−71T2 |
| 73 | 1−7.87T+73T2 |
| 79 | 1+4.63iT−79T2 |
| 83 | 1−4.32iT−83T2 |
| 89 | 1−2.18iT−89T2 |
| 97 | 1+3.42T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.11066815469470715992608918168, −9.130871308074625656269509215038, −8.031058072387693213642777368197, −7.54753864409713299074087671294, −6.59323401952225004335020106978, −5.28949150664468443937013209439, −4.97831714020772332360148527307, −3.65878499240447562835692959285, −3.19986343888133786327154414798, −1.22356323714725716249020534757,
1.42213792312104382060461752986, 2.72424389259479294529683873622, 3.69612569081898843190419367685, 4.62461361777553207130721251226, 5.40688451665530415184873858863, 6.81390723619126144550400083089, 7.28810476159053368743458749645, 7.74613637623147234393259761646, 9.621233739597246051827154236759, 10.00534428435882195404308186025