Properties

Label 2-980-140.139-c1-0-64
Degree 22
Conductor 980980
Sign 0.277+0.960i0.277 + 0.960i
Analytic cond. 7.825337.82533
Root an. cond. 2.797382.79738
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.36 − 0.385i)2-s + 0.423i·3-s + (1.70 + 1.04i)4-s + (−1.74 + 1.39i)5-s + (0.163 − 0.576i)6-s + (−1.91 − 2.08i)8-s + 2.82·9-s + (2.91 − 1.23i)10-s − 4.89i·11-s + (−0.443 + 0.721i)12-s − 2.54·13-s + (−0.591 − 0.738i)15-s + (1.80 + 3.57i)16-s + 5.11·17-s + (−3.83 − 1.08i)18-s − 6.26·19-s + ⋯
L(s)  = 1  + (−0.962 − 0.272i)2-s + 0.244i·3-s + (0.851 + 0.524i)4-s + (−0.780 + 0.625i)5-s + (0.0665 − 0.235i)6-s + (−0.676 − 0.736i)8-s + 0.940·9-s + (0.921 − 0.388i)10-s − 1.47i·11-s + (−0.128 + 0.208i)12-s − 0.706·13-s + (−0.152 − 0.190i)15-s + (0.450 + 0.892i)16-s + 1.24·17-s + (−0.904 − 0.256i)18-s − 1.43·19-s + ⋯

Functional equation

Λ(s)=(980s/2ΓC(s)L(s)=((0.277+0.960i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.277 + 0.960i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(980s/2ΓC(s+1/2)L(s)=((0.277+0.960i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.277 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 980980    =    225722^{2} \cdot 5 \cdot 7^{2}
Sign: 0.277+0.960i0.277 + 0.960i
Analytic conductor: 7.825337.82533
Root analytic conductor: 2.797382.79738
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ980(979,)\chi_{980} (979, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 980, ( :1/2), 0.277+0.960i)(2,\ 980,\ (\ :1/2),\ 0.277 + 0.960i)

Particular Values

L(1)L(1) \approx 0.5441290.409334i0.544129 - 0.409334i
L(12)L(\frac12) \approx 0.5441290.409334i0.544129 - 0.409334i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.36+0.385i)T 1 + (1.36 + 0.385i)T
5 1+(1.741.39i)T 1 + (1.74 - 1.39i)T
7 1 1
good3 10.423iT3T2 1 - 0.423iT - 3T^{2}
11 1+4.89iT11T2 1 + 4.89iT - 11T^{2}
13 1+2.54T+13T2 1 + 2.54T + 13T^{2}
17 15.11T+17T2 1 - 5.11T + 17T^{2}
19 1+6.26T+19T2 1 + 6.26T + 19T^{2}
23 1+4.63T+23T2 1 + 4.63T + 23T^{2}
29 1+1.88T+29T2 1 + 1.88T + 29T^{2}
31 11.47T+31T2 1 - 1.47T + 31T^{2}
37 1+2.35iT37T2 1 + 2.35iT - 37T^{2}
41 1+7.05iT41T2 1 + 7.05iT - 41T^{2}
43 110.7T+43T2 1 - 10.7T + 43T^{2}
47 1+12.2iT47T2 1 + 12.2iT - 47T^{2}
53 1+2.23iT53T2 1 + 2.23iT - 53T^{2}
59 15.68T+59T2 1 - 5.68T + 59T^{2}
61 13.87iT61T2 1 - 3.87iT - 61T^{2}
67 1+0.889T+67T2 1 + 0.889T + 67T^{2}
71 1+14.3iT71T2 1 + 14.3iT - 71T^{2}
73 17.87T+73T2 1 - 7.87T + 73T^{2}
79 1+4.63iT79T2 1 + 4.63iT - 79T^{2}
83 14.32iT83T2 1 - 4.32iT - 83T^{2}
89 1+2.18iT89T2 1 + 2.18iT - 89T^{2}
97 1+3.42T+97T2 1 + 3.42T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.04081128400024297605089400328, −8.977826709125875115199842046999, −8.157086377408563965289590255794, −7.52535347202671296701170832955, −6.70299907196099508331374890128, −5.73239694653302311297990095911, −4.08786647449685797695103002394, −3.43243088101486807484913663598, −2.20998014045916134004057994940, −0.47754250680285151547833910002, 1.22703849621438465423137230664, 2.34442292278684794566963064703, 4.09638739652273207096865611077, 4.89098561961929100151483351360, 6.16117970127656949502883840054, 7.18370266724588254408904266406, 7.66643037994739798608417070383, 8.310656328198516145698969602987, 9.522155546706164107948301508100, 9.866929588527376311037673980069

Graph of the ZZ-function along the critical line