L(s) = 1 | + (−1.36 − 0.385i)2-s + 0.423i·3-s + (1.70 + 1.04i)4-s + (−1.74 + 1.39i)5-s + (0.163 − 0.576i)6-s + (−1.91 − 2.08i)8-s + 2.82·9-s + (2.91 − 1.23i)10-s − 4.89i·11-s + (−0.443 + 0.721i)12-s − 2.54·13-s + (−0.591 − 0.738i)15-s + (1.80 + 3.57i)16-s + 5.11·17-s + (−3.83 − 1.08i)18-s − 6.26·19-s + ⋯ |
L(s) = 1 | + (−0.962 − 0.272i)2-s + 0.244i·3-s + (0.851 + 0.524i)4-s + (−0.780 + 0.625i)5-s + (0.0665 − 0.235i)6-s + (−0.676 − 0.736i)8-s + 0.940·9-s + (0.921 − 0.388i)10-s − 1.47i·11-s + (−0.128 + 0.208i)12-s − 0.706·13-s + (−0.152 − 0.190i)15-s + (0.450 + 0.892i)16-s + 1.24·17-s + (−0.904 − 0.256i)18-s − 1.43·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.277 + 0.960i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.277 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.544129 - 0.409334i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.544129 - 0.409334i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 + 0.385i)T \) |
| 5 | \( 1 + (1.74 - 1.39i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 0.423iT - 3T^{2} \) |
| 11 | \( 1 + 4.89iT - 11T^{2} \) |
| 13 | \( 1 + 2.54T + 13T^{2} \) |
| 17 | \( 1 - 5.11T + 17T^{2} \) |
| 19 | \( 1 + 6.26T + 19T^{2} \) |
| 23 | \( 1 + 4.63T + 23T^{2} \) |
| 29 | \( 1 + 1.88T + 29T^{2} \) |
| 31 | \( 1 - 1.47T + 31T^{2} \) |
| 37 | \( 1 + 2.35iT - 37T^{2} \) |
| 41 | \( 1 + 7.05iT - 41T^{2} \) |
| 43 | \( 1 - 10.7T + 43T^{2} \) |
| 47 | \( 1 + 12.2iT - 47T^{2} \) |
| 53 | \( 1 + 2.23iT - 53T^{2} \) |
| 59 | \( 1 - 5.68T + 59T^{2} \) |
| 61 | \( 1 - 3.87iT - 61T^{2} \) |
| 67 | \( 1 + 0.889T + 67T^{2} \) |
| 71 | \( 1 + 14.3iT - 71T^{2} \) |
| 73 | \( 1 - 7.87T + 73T^{2} \) |
| 79 | \( 1 + 4.63iT - 79T^{2} \) |
| 83 | \( 1 - 4.32iT - 83T^{2} \) |
| 89 | \( 1 + 2.18iT - 89T^{2} \) |
| 97 | \( 1 + 3.42T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04081128400024297605089400328, −8.977826709125875115199842046999, −8.157086377408563965289590255794, −7.52535347202671296701170832955, −6.70299907196099508331374890128, −5.73239694653302311297990095911, −4.08786647449685797695103002394, −3.43243088101486807484913663598, −2.20998014045916134004057994940, −0.47754250680285151547833910002,
1.22703849621438465423137230664, 2.34442292278684794566963064703, 4.09638739652273207096865611077, 4.89098561961929100151483351360, 6.16117970127656949502883840054, 7.18370266724588254408904266406, 7.66643037994739798608417070383, 8.310656328198516145698969602987, 9.522155546706164107948301508100, 9.866929588527376311037673980069