L(s) = 1 | + (−0.576 + 1.29i)2-s − 2.50i·3-s + (−1.33 − 1.48i)4-s + (0.639 + 2.14i)5-s + (3.23 + 1.44i)6-s + (2.69 − 0.867i)8-s − 3.25·9-s + (−3.13 − 0.408i)10-s + 2.25i·11-s + (−3.72 + 3.34i)12-s − 5.96·13-s + (5.35 − 1.60i)15-s + (−0.430 + 3.97i)16-s + 2.00·17-s + (1.87 − 4.20i)18-s − 7.81·19-s + ⋯ |
L(s) = 1 | + (−0.407 + 0.913i)2-s − 1.44i·3-s + (−0.667 − 0.744i)4-s + (0.286 + 0.958i)5-s + (1.31 + 0.588i)6-s + (0.951 − 0.306i)8-s − 1.08·9-s + (−0.991 − 0.129i)10-s + 0.678i·11-s + (−1.07 + 0.964i)12-s − 1.65·13-s + (1.38 − 0.413i)15-s + (−0.107 + 0.994i)16-s + 0.486·17-s + (0.442 − 0.991i)18-s − 1.79·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.924−0.381i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.924−0.381i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.924−0.381i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(979,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.924−0.381i)
|
Particular Values
L(1) |
≈ |
0.0649546+0.327196i |
L(21) |
≈ |
0.0649546+0.327196i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.576−1.29i)T |
| 5 | 1+(−0.639−2.14i)T |
| 7 | 1 |
good | 3 | 1+2.50iT−3T2 |
| 11 | 1−2.25iT−11T2 |
| 13 | 1+5.96T+13T2 |
| 17 | 1−2.00T+17T2 |
| 19 | 1+7.81T+19T2 |
| 23 | 1−2.99T+23T2 |
| 29 | 1+4.87T+29T2 |
| 31 | 1−1.49T+31T2 |
| 37 | 1−4.78iT−37T2 |
| 41 | 1−8.82iT−41T2 |
| 43 | 1+1.12T+43T2 |
| 47 | 1+9.56iT−47T2 |
| 53 | 1−7.06iT−53T2 |
| 59 | 1+11.4T+59T2 |
| 61 | 1+1.21iT−61T2 |
| 67 | 1+1.11T+67T2 |
| 71 | 1−8.40iT−71T2 |
| 73 | 1+5.88T+73T2 |
| 79 | 1−12.1iT−79T2 |
| 83 | 1−11.1iT−83T2 |
| 89 | 1−4.57iT−89T2 |
| 97 | 1+4.62T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.12638915348308947898702682423, −9.531300496666343458793194892116, −8.316689187685849304286191507887, −7.60879145320222259471484995169, −6.96358829423518498647533905204, −6.55869829931409425640953062101, −5.57923770750810818217021181556, −4.44493138813143213237126140188, −2.62495151730960501573448190463, −1.68526772990729622009536009751,
0.16772313963424912985265124684, 2.05472960792747094235758711030, 3.27918307978313669021068826438, 4.34074343866254971839446625842, 4.82462335115564839480684767926, 5.76353021205831304842404040753, 7.45675062255404347206829313670, 8.462179886903317164411041042029, 9.157421302963026057935531984299, 9.584754198303044245688150644685