Properties

Label 2-980-140.139-c1-0-58
Degree 22
Conductor 980980
Sign 0.148+0.988i0.148 + 0.988i
Analytic cond. 7.825337.82533
Root an. cond. 2.797382.79738
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.23 − 0.691i)2-s − 2.08i·3-s + (1.04 + 1.70i)4-s + (1.52 + 1.63i)5-s + (−1.43 + 2.56i)6-s + (−0.107 − 2.82i)8-s − 1.32·9-s + (−0.746 − 3.07i)10-s − 0.775i·11-s + (3.54 − 2.17i)12-s + 4.18·13-s + (3.40 − 3.16i)15-s + (−1.82 + 3.56i)16-s − 4.18·17-s + (1.63 + 0.917i)18-s − 4.88·19-s + ⋯
L(s)  = 1  + (−0.872 − 0.488i)2-s − 1.20i·3-s + (0.521 + 0.853i)4-s + (0.680 + 0.732i)5-s + (−0.587 + 1.04i)6-s + (−0.0381 − 0.999i)8-s − 0.442·9-s + (−0.235 − 0.971i)10-s − 0.233i·11-s + (1.02 − 0.626i)12-s + 1.16·13-s + (0.879 − 0.817i)15-s + (−0.455 + 0.890i)16-s − 1.01·17-s + (0.385 + 0.216i)18-s − 1.12·19-s + ⋯

Functional equation

Λ(s)=(980s/2ΓC(s)L(s)=((0.148+0.988i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.148 + 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(980s/2ΓC(s+1/2)L(s)=((0.148+0.988i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.148 + 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 980980    =    225722^{2} \cdot 5 \cdot 7^{2}
Sign: 0.148+0.988i0.148 + 0.988i
Analytic conductor: 7.825337.82533
Root analytic conductor: 2.797382.79738
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ980(979,)\chi_{980} (979, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 980, ( :1/2), 0.148+0.988i)(2,\ 980,\ (\ :1/2),\ 0.148 + 0.988i)

Particular Values

L(1)L(1) \approx 0.9529020.820739i0.952902 - 0.820739i
L(12)L(\frac12) \approx 0.9529020.820739i0.952902 - 0.820739i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.23+0.691i)T 1 + (1.23 + 0.691i)T
5 1+(1.521.63i)T 1 + (-1.52 - 1.63i)T
7 1 1
good3 1+2.08iT3T2 1 + 2.08iT - 3T^{2}
11 1+0.775iT11T2 1 + 0.775iT - 11T^{2}
13 14.18T+13T2 1 - 4.18T + 13T^{2}
17 1+4.18T+17T2 1 + 4.18T + 17T^{2}
19 1+4.88T+19T2 1 + 4.88T + 19T^{2}
23 11.89T+23T2 1 - 1.89T + 23T^{2}
29 19.98T+29T2 1 - 9.98T + 29T^{2}
31 110.3T+31T2 1 - 10.3T + 31T^{2}
37 1+3.41iT37T2 1 + 3.41iT - 37T^{2}
41 1+3.02iT41T2 1 + 3.02iT - 41T^{2}
43 19.19T+43T2 1 - 9.19T + 43T^{2}
47 1+8.27iT47T2 1 + 8.27iT - 47T^{2}
53 12.59iT53T2 1 - 2.59iT - 53T^{2}
59 1+4.60T+59T2 1 + 4.60T + 59T^{2}
61 1+3.26iT61T2 1 + 3.26iT - 61T^{2}
67 1+2.27T+67T2 1 + 2.27T + 67T^{2}
71 14.41iT71T2 1 - 4.41iT - 71T^{2}
73 12.74T+73T2 1 - 2.74T + 73T^{2}
79 114.2iT79T2 1 - 14.2iT - 79T^{2}
83 1+2.36iT83T2 1 + 2.36iT - 83T^{2}
89 1+14.3iT89T2 1 + 14.3iT - 89T^{2}
97 1+14.4T+97T2 1 + 14.4T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.934679776420637321547321733552, −8.749229077213744150397041341101, −8.349794606413398973609359431360, −7.23923048100569660871740947942, −6.52535724788495087073899980092, −6.15319057573086786674734275376, −4.23098426455564776626970141616, −2.84656628330016052107043151000, −2.09357944728399799488079597539, −0.954542935649508740206825872310, 1.18614043410395345958499512997, 2.63590937095830209847617359923, 4.39338511228907902457448009822, 4.82396994851791454761700344242, 6.11591644991270745190804102738, 6.54952471222072196025010994871, 8.088595862310847988761467420176, 8.757112890681949819193592980131, 9.237355056197465632718698048960, 10.14590844416502734573889860436

Graph of the ZZ-function along the critical line