L(s) = 1 | + (−1.23 − 0.691i)2-s − 2.08i·3-s + (1.04 + 1.70i)4-s + (1.52 + 1.63i)5-s + (−1.43 + 2.56i)6-s + (−0.107 − 2.82i)8-s − 1.32·9-s + (−0.746 − 3.07i)10-s − 0.775i·11-s + (3.54 − 2.17i)12-s + 4.18·13-s + (3.40 − 3.16i)15-s + (−1.82 + 3.56i)16-s − 4.18·17-s + (1.63 + 0.917i)18-s − 4.88·19-s + ⋯ |
L(s) = 1 | + (−0.872 − 0.488i)2-s − 1.20i·3-s + (0.521 + 0.853i)4-s + (0.680 + 0.732i)5-s + (−0.587 + 1.04i)6-s + (−0.0381 − 0.999i)8-s − 0.442·9-s + (−0.235 − 0.971i)10-s − 0.233i·11-s + (1.02 − 0.626i)12-s + 1.16·13-s + (0.879 − 0.817i)15-s + (−0.455 + 0.890i)16-s − 1.01·17-s + (0.385 + 0.216i)18-s − 1.12·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.148 + 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.148 + 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.952902 - 0.820739i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.952902 - 0.820739i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.23 + 0.691i)T \) |
| 5 | \( 1 + (-1.52 - 1.63i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 2.08iT - 3T^{2} \) |
| 11 | \( 1 + 0.775iT - 11T^{2} \) |
| 13 | \( 1 - 4.18T + 13T^{2} \) |
| 17 | \( 1 + 4.18T + 17T^{2} \) |
| 19 | \( 1 + 4.88T + 19T^{2} \) |
| 23 | \( 1 - 1.89T + 23T^{2} \) |
| 29 | \( 1 - 9.98T + 29T^{2} \) |
| 31 | \( 1 - 10.3T + 31T^{2} \) |
| 37 | \( 1 + 3.41iT - 37T^{2} \) |
| 41 | \( 1 + 3.02iT - 41T^{2} \) |
| 43 | \( 1 - 9.19T + 43T^{2} \) |
| 47 | \( 1 + 8.27iT - 47T^{2} \) |
| 53 | \( 1 - 2.59iT - 53T^{2} \) |
| 59 | \( 1 + 4.60T + 59T^{2} \) |
| 61 | \( 1 + 3.26iT - 61T^{2} \) |
| 67 | \( 1 + 2.27T + 67T^{2} \) |
| 71 | \( 1 - 4.41iT - 71T^{2} \) |
| 73 | \( 1 - 2.74T + 73T^{2} \) |
| 79 | \( 1 - 14.2iT - 79T^{2} \) |
| 83 | \( 1 + 2.36iT - 83T^{2} \) |
| 89 | \( 1 + 14.3iT - 89T^{2} \) |
| 97 | \( 1 + 14.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.934679776420637321547321733552, −8.749229077213744150397041341101, −8.349794606413398973609359431360, −7.23923048100569660871740947942, −6.52535724788495087073899980092, −6.15319057573086786674734275376, −4.23098426455564776626970141616, −2.84656628330016052107043151000, −2.09357944728399799488079597539, −0.954542935649508740206825872310,
1.18614043410395345958499512997, 2.63590937095830209847617359923, 4.39338511228907902457448009822, 4.82396994851791454761700344242, 6.11591644991270745190804102738, 6.54952471222072196025010994871, 8.088595862310847988761467420176, 8.757112890681949819193592980131, 9.237355056197465632718698048960, 10.14590844416502734573889860436