L(s) = 1 | + (−1.38 − 0.295i)2-s − 1.66i·3-s + (1.82 + 0.817i)4-s + (2.22 − 0.220i)5-s + (−0.491 + 2.29i)6-s + (−2.28 − 1.67i)8-s + 0.236·9-s + (−3.14 − 0.352i)10-s + 4.81i·11-s + (1.35 − 3.03i)12-s − 2.14·13-s + (−0.366 − 3.69i)15-s + (2.66 + 2.98i)16-s + 5.02·17-s + (−0.326 − 0.0698i)18-s + 1.36·19-s + ⋯ |
L(s) = 1 | + (−0.977 − 0.209i)2-s − 0.959i·3-s + (0.912 + 0.408i)4-s + (0.995 − 0.0986i)5-s + (−0.200 + 0.938i)6-s + (−0.807 − 0.590i)8-s + 0.0787·9-s + (−0.993 − 0.111i)10-s + 1.45i·11-s + (0.392 − 0.875i)12-s − 0.594·13-s + (−0.0946 − 0.955i)15-s + (0.665 + 0.746i)16-s + 1.21·17-s + (−0.0770 − 0.0164i)18-s + 0.312·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.735 + 0.677i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.735 + 0.677i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.24699 - 0.486391i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.24699 - 0.486391i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.38 + 0.295i)T \) |
| 5 | \( 1 + (-2.22 + 0.220i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 1.66iT - 3T^{2} \) |
| 11 | \( 1 - 4.81iT - 11T^{2} \) |
| 13 | \( 1 + 2.14T + 13T^{2} \) |
| 17 | \( 1 - 5.02T + 17T^{2} \) |
| 19 | \( 1 - 1.36T + 19T^{2} \) |
| 23 | \( 1 - 5.18T + 23T^{2} \) |
| 29 | \( 1 + 6.43T + 29T^{2} \) |
| 31 | \( 1 - 4.62T + 31T^{2} \) |
| 37 | \( 1 - 9.82iT - 37T^{2} \) |
| 41 | \( 1 - 4.71iT - 41T^{2} \) |
| 43 | \( 1 - 0.141T + 43T^{2} \) |
| 47 | \( 1 + 2.55iT - 47T^{2} \) |
| 53 | \( 1 + 4.84iT - 53T^{2} \) |
| 59 | \( 1 - 14.1T + 59T^{2} \) |
| 61 | \( 1 - 10.1iT - 61T^{2} \) |
| 67 | \( 1 + 9.64T + 67T^{2} \) |
| 71 | \( 1 + 9.58iT - 71T^{2} \) |
| 73 | \( 1 + 1.67T + 73T^{2} \) |
| 79 | \( 1 + 11.8iT - 79T^{2} \) |
| 83 | \( 1 + 0.811iT - 83T^{2} \) |
| 89 | \( 1 + 16.0iT - 89T^{2} \) |
| 97 | \( 1 - 1.76T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.962243242811442181339363916482, −9.245062985684059501737798612038, −8.156926715578792681103493415972, −7.29072086286097160335133925322, −6.91812755796347676966571454238, −5.89676884818298630821351570699, −4.75503932989340113318611190256, −2.98392017182146781851145926891, −1.96452431896528926121047370542, −1.19101043850434257315231746232,
1.08369852473739588665449664551, 2.60911874337414455949775156647, 3.61510217963040851941385707144, 5.30328053927552948010635409917, 5.64476662776271420731604955683, 6.79910587637447088969232268865, 7.68004466369039999853060123697, 8.762337901640129922121908876432, 9.386289710593094802873034486127, 9.920395147892714654472806808863