L(s) = 1 | + (−0.255 − 1.39i)2-s + 3.18i·3-s + (−1.86 + 0.711i)4-s + (1.80 + 1.31i)5-s + (4.43 − 0.815i)6-s + (1.46 + 2.41i)8-s − 7.15·9-s + (1.36 − 2.85i)10-s + 4.51i·11-s + (−2.26 − 5.95i)12-s − 2.22·13-s + (−4.19 + 5.75i)15-s + (2.98 − 2.66i)16-s − 2.52·17-s + (1.83 + 9.94i)18-s + 5.21·19-s + ⋯ |
L(s) = 1 | + (−0.180 − 0.983i)2-s + 1.83i·3-s + (−0.934 + 0.355i)4-s + (0.808 + 0.588i)5-s + (1.80 − 0.332i)6-s + (0.519 + 0.854i)8-s − 2.38·9-s + (0.432 − 0.901i)10-s + 1.36i·11-s + (−0.654 − 1.71i)12-s − 0.617·13-s + (−1.08 + 1.48i)15-s + (0.746 − 0.665i)16-s − 0.613·17-s + (0.431 + 2.34i)18-s + 1.19·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.772 - 0.634i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.772 - 0.634i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.365235 + 1.02067i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.365235 + 1.02067i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.255 + 1.39i)T \) |
| 5 | \( 1 + (-1.80 - 1.31i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 3.18iT - 3T^{2} \) |
| 11 | \( 1 - 4.51iT - 11T^{2} \) |
| 13 | \( 1 + 2.22T + 13T^{2} \) |
| 17 | \( 1 + 2.52T + 17T^{2} \) |
| 19 | \( 1 - 5.21T + 19T^{2} \) |
| 23 | \( 1 + 1.71T + 23T^{2} \) |
| 29 | \( 1 + 2.31T + 29T^{2} \) |
| 31 | \( 1 - 4.62T + 31T^{2} \) |
| 37 | \( 1 + 0.336iT - 37T^{2} \) |
| 41 | \( 1 + 3.28iT - 41T^{2} \) |
| 43 | \( 1 + 6.66T + 43T^{2} \) |
| 47 | \( 1 - 1.44iT - 47T^{2} \) |
| 53 | \( 1 + 10.0iT - 53T^{2} \) |
| 59 | \( 1 - 3.20T + 59T^{2} \) |
| 61 | \( 1 + 6.05iT - 61T^{2} \) |
| 67 | \( 1 + 11.1T + 67T^{2} \) |
| 71 | \( 1 - 9.15iT - 71T^{2} \) |
| 73 | \( 1 - 3.24T + 73T^{2} \) |
| 79 | \( 1 - 14.2iT - 79T^{2} \) |
| 83 | \( 1 - 11.3iT - 83T^{2} \) |
| 89 | \( 1 - 15.2iT - 89T^{2} \) |
| 97 | \( 1 + 4.49T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02862597443009280551667127119, −9.806975217189317727167841708321, −9.297636765261983243905970229008, −8.236167688832109010139482244193, −6.97254050467073586850103181796, −5.48703857837386350260505643453, −4.89521121400578764472089657100, −4.02924184458937410091243964702, −3.03874772670188949370859491209, −2.13040192019643674202094700200,
0.53528947054129035915779256045, 1.59451105614399551545037849650, 3.00319059933365154291657929075, 4.86412184340991253084314728387, 5.85351906682085150728597753197, 6.19041018277654459879101738388, 7.16721496021117492440773687690, 7.87983203544855945617906784320, 8.623885199763550222052709348205, 9.207741657735590922543838178959