L(s) = 1 | + (0.576 + 1.29i)2-s + 2.50i·3-s + (−1.33 + 1.48i)4-s + (0.639 + 2.14i)5-s + (−3.23 + 1.44i)6-s + (−2.69 − 0.867i)8-s − 3.25·9-s + (−2.39 + 2.06i)10-s − 2.25i·11-s + (−3.72 − 3.34i)12-s − 5.96·13-s + (−5.35 + 1.60i)15-s + (−0.430 − 3.97i)16-s + 2.00·17-s + (−1.87 − 4.20i)18-s + 7.81·19-s + ⋯ |
L(s) = 1 | + (0.407 + 0.913i)2-s + 1.44i·3-s + (−0.667 + 0.744i)4-s + (0.286 + 0.958i)5-s + (−1.31 + 0.588i)6-s + (−0.951 − 0.306i)8-s − 1.08·9-s + (−0.758 + 0.651i)10-s − 0.678i·11-s + (−1.07 − 0.964i)12-s − 1.65·13-s + (−1.38 + 0.413i)15-s + (−0.107 − 0.994i)16-s + 0.486·17-s + (−0.442 − 0.991i)18-s + 1.79·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.280+0.959i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.280+0.959i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.280+0.959i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(979,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.280+0.959i)
|
Particular Values
L(1) |
≈ |
0.807714−1.07716i |
L(21) |
≈ |
0.807714−1.07716i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.576−1.29i)T |
| 5 | 1+(−0.639−2.14i)T |
| 7 | 1 |
good | 3 | 1−2.50iT−3T2 |
| 11 | 1+2.25iT−11T2 |
| 13 | 1+5.96T+13T2 |
| 17 | 1−2.00T+17T2 |
| 19 | 1−7.81T+19T2 |
| 23 | 1+2.99T+23T2 |
| 29 | 1+4.87T+29T2 |
| 31 | 1+1.49T+31T2 |
| 37 | 1−4.78iT−37T2 |
| 41 | 1−8.82iT−41T2 |
| 43 | 1−1.12T+43T2 |
| 47 | 1−9.56iT−47T2 |
| 53 | 1−7.06iT−53T2 |
| 59 | 1−11.4T+59T2 |
| 61 | 1+1.21iT−61T2 |
| 67 | 1−1.11T+67T2 |
| 71 | 1+8.40iT−71T2 |
| 73 | 1+5.88T+73T2 |
| 79 | 1+12.1iT−79T2 |
| 83 | 1+11.1iT−83T2 |
| 89 | 1−4.57iT−89T2 |
| 97 | 1+4.62T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25083842959889645503787141311, −9.693615767361617856722752099775, −9.192126905639837662091902395947, −7.82066495949770049506451921185, −7.31054904044431464460121764958, −6.09139103035394457889454536081, −5.37201187260434183501548209472, −4.61024614305815161769641966760, −3.48102537958550228801251168926, −2.89575645816537328892128963103,
0.53405741830788877496693053508, 1.73822863085117964558662835226, 2.43772969753838567112286423909, 3.93126865885455530328782371660, 5.24248267990234540165219500717, 5.55880536221261849997066790054, 7.02993239885298321340728675852, 7.61145889335716296228685849838, 8.653546334423553237225092566378, 9.701192680929505107630909266449