Properties

Label 2-980-140.139-c1-0-18
Degree $2$
Conductor $980$
Sign $-0.280 + 0.959i$
Analytic cond. $7.82533$
Root an. cond. $2.79738$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.576 + 1.29i)2-s + 2.50i·3-s + (−1.33 + 1.48i)4-s + (0.639 + 2.14i)5-s + (−3.23 + 1.44i)6-s + (−2.69 − 0.867i)8-s − 3.25·9-s + (−2.39 + 2.06i)10-s − 2.25i·11-s + (−3.72 − 3.34i)12-s − 5.96·13-s + (−5.35 + 1.60i)15-s + (−0.430 − 3.97i)16-s + 2.00·17-s + (−1.87 − 4.20i)18-s + 7.81·19-s + ⋯
L(s)  = 1  + (0.407 + 0.913i)2-s + 1.44i·3-s + (−0.667 + 0.744i)4-s + (0.286 + 0.958i)5-s + (−1.31 + 0.588i)6-s + (−0.951 − 0.306i)8-s − 1.08·9-s + (−0.758 + 0.651i)10-s − 0.678i·11-s + (−1.07 − 0.964i)12-s − 1.65·13-s + (−1.38 + 0.413i)15-s + (−0.107 − 0.994i)16-s + 0.486·17-s + (−0.442 − 0.991i)18-s + 1.79·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.280 + 0.959i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.280 + 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(980\)    =    \(2^{2} \cdot 5 \cdot 7^{2}\)
Sign: $-0.280 + 0.959i$
Analytic conductor: \(7.82533\)
Root analytic conductor: \(2.79738\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{980} (979, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 980,\ (\ :1/2),\ -0.280 + 0.959i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.807714 - 1.07716i\)
\(L(\frac12)\) \(\approx\) \(0.807714 - 1.07716i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.576 - 1.29i)T \)
5 \( 1 + (-0.639 - 2.14i)T \)
7 \( 1 \)
good3 \( 1 - 2.50iT - 3T^{2} \)
11 \( 1 + 2.25iT - 11T^{2} \)
13 \( 1 + 5.96T + 13T^{2} \)
17 \( 1 - 2.00T + 17T^{2} \)
19 \( 1 - 7.81T + 19T^{2} \)
23 \( 1 + 2.99T + 23T^{2} \)
29 \( 1 + 4.87T + 29T^{2} \)
31 \( 1 + 1.49T + 31T^{2} \)
37 \( 1 - 4.78iT - 37T^{2} \)
41 \( 1 - 8.82iT - 41T^{2} \)
43 \( 1 - 1.12T + 43T^{2} \)
47 \( 1 - 9.56iT - 47T^{2} \)
53 \( 1 - 7.06iT - 53T^{2} \)
59 \( 1 - 11.4T + 59T^{2} \)
61 \( 1 + 1.21iT - 61T^{2} \)
67 \( 1 - 1.11T + 67T^{2} \)
71 \( 1 + 8.40iT - 71T^{2} \)
73 \( 1 + 5.88T + 73T^{2} \)
79 \( 1 + 12.1iT - 79T^{2} \)
83 \( 1 + 11.1iT - 83T^{2} \)
89 \( 1 - 4.57iT - 89T^{2} \)
97 \( 1 + 4.62T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.25083842959889645503787141311, −9.693615767361617856722752099775, −9.192126905639837662091902395947, −7.82066495949770049506451921185, −7.31054904044431464460121764958, −6.09139103035394457889454536081, −5.37201187260434183501548209472, −4.61024614305815161769641966760, −3.48102537958550228801251168926, −2.89575645816537328892128963103, 0.53405741830788877496693053508, 1.73822863085117964558662835226, 2.43772969753838567112286423909, 3.93126865885455530328782371660, 5.24248267990234540165219500717, 5.55880536221261849997066790054, 7.02993239885298321340728675852, 7.61145889335716296228685849838, 8.653546334423553237225092566378, 9.701192680929505107630909266449

Graph of the $Z$-function along the critical line