Properties

Label 2-980-140.139-c1-0-18
Degree 22
Conductor 980980
Sign 0.280+0.959i-0.280 + 0.959i
Analytic cond. 7.825337.82533
Root an. cond. 2.797382.79738
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.576 + 1.29i)2-s + 2.50i·3-s + (−1.33 + 1.48i)4-s + (0.639 + 2.14i)5-s + (−3.23 + 1.44i)6-s + (−2.69 − 0.867i)8-s − 3.25·9-s + (−2.39 + 2.06i)10-s − 2.25i·11-s + (−3.72 − 3.34i)12-s − 5.96·13-s + (−5.35 + 1.60i)15-s + (−0.430 − 3.97i)16-s + 2.00·17-s + (−1.87 − 4.20i)18-s + 7.81·19-s + ⋯
L(s)  = 1  + (0.407 + 0.913i)2-s + 1.44i·3-s + (−0.667 + 0.744i)4-s + (0.286 + 0.958i)5-s + (−1.31 + 0.588i)6-s + (−0.951 − 0.306i)8-s − 1.08·9-s + (−0.758 + 0.651i)10-s − 0.678i·11-s + (−1.07 − 0.964i)12-s − 1.65·13-s + (−1.38 + 0.413i)15-s + (−0.107 − 0.994i)16-s + 0.486·17-s + (−0.442 − 0.991i)18-s + 1.79·19-s + ⋯

Functional equation

Λ(s)=(980s/2ΓC(s)L(s)=((0.280+0.959i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.280 + 0.959i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(980s/2ΓC(s+1/2)L(s)=((0.280+0.959i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.280 + 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 980980    =    225722^{2} \cdot 5 \cdot 7^{2}
Sign: 0.280+0.959i-0.280 + 0.959i
Analytic conductor: 7.825337.82533
Root analytic conductor: 2.797382.79738
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ980(979,)\chi_{980} (979, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 980, ( :1/2), 0.280+0.959i)(2,\ 980,\ (\ :1/2),\ -0.280 + 0.959i)

Particular Values

L(1)L(1) \approx 0.8077141.07716i0.807714 - 1.07716i
L(12)L(\frac12) \approx 0.8077141.07716i0.807714 - 1.07716i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.5761.29i)T 1 + (-0.576 - 1.29i)T
5 1+(0.6392.14i)T 1 + (-0.639 - 2.14i)T
7 1 1
good3 12.50iT3T2 1 - 2.50iT - 3T^{2}
11 1+2.25iT11T2 1 + 2.25iT - 11T^{2}
13 1+5.96T+13T2 1 + 5.96T + 13T^{2}
17 12.00T+17T2 1 - 2.00T + 17T^{2}
19 17.81T+19T2 1 - 7.81T + 19T^{2}
23 1+2.99T+23T2 1 + 2.99T + 23T^{2}
29 1+4.87T+29T2 1 + 4.87T + 29T^{2}
31 1+1.49T+31T2 1 + 1.49T + 31T^{2}
37 14.78iT37T2 1 - 4.78iT - 37T^{2}
41 18.82iT41T2 1 - 8.82iT - 41T^{2}
43 11.12T+43T2 1 - 1.12T + 43T^{2}
47 19.56iT47T2 1 - 9.56iT - 47T^{2}
53 17.06iT53T2 1 - 7.06iT - 53T^{2}
59 111.4T+59T2 1 - 11.4T + 59T^{2}
61 1+1.21iT61T2 1 + 1.21iT - 61T^{2}
67 11.11T+67T2 1 - 1.11T + 67T^{2}
71 1+8.40iT71T2 1 + 8.40iT - 71T^{2}
73 1+5.88T+73T2 1 + 5.88T + 73T^{2}
79 1+12.1iT79T2 1 + 12.1iT - 79T^{2}
83 1+11.1iT83T2 1 + 11.1iT - 83T^{2}
89 14.57iT89T2 1 - 4.57iT - 89T^{2}
97 1+4.62T+97T2 1 + 4.62T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.25083842959889645503787141311, −9.693615767361617856722752099775, −9.192126905639837662091902395947, −7.82066495949770049506451921185, −7.31054904044431464460121764958, −6.09139103035394457889454536081, −5.37201187260434183501548209472, −4.61024614305815161769641966760, −3.48102537958550228801251168926, −2.89575645816537328892128963103, 0.53405741830788877496693053508, 1.73822863085117964558662835226, 2.43772969753838567112286423909, 3.93126865885455530328782371660, 5.24248267990234540165219500717, 5.55880536221261849997066790054, 7.02993239885298321340728675852, 7.61145889335716296228685849838, 8.653546334423553237225092566378, 9.701192680929505107630909266449

Graph of the ZZ-function along the critical line