L(s) = 1 | + (−1.38 − 0.295i)2-s + 1.66i·3-s + (1.82 + 0.817i)4-s + (−2.22 + 0.220i)5-s + (0.491 − 2.29i)6-s + (−2.28 − 1.67i)8-s + 0.236·9-s + (3.14 + 0.352i)10-s + 4.81i·11-s + (−1.35 + 3.03i)12-s + 2.14·13-s + (−0.366 − 3.69i)15-s + (2.66 + 2.98i)16-s − 5.02·17-s + (−0.326 − 0.0698i)18-s − 1.36·19-s + ⋯ |
L(s) = 1 | + (−0.977 − 0.209i)2-s + 0.959i·3-s + (0.912 + 0.408i)4-s + (−0.995 + 0.0986i)5-s + (0.200 − 0.938i)6-s + (−0.807 − 0.590i)8-s + 0.0787·9-s + (0.993 + 0.111i)10-s + 1.45i·11-s + (−0.392 + 0.875i)12-s + 0.594·13-s + (−0.0946 − 0.955i)15-s + (0.665 + 0.746i)16-s − 1.21·17-s + (−0.0770 − 0.0164i)18-s − 0.312·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.995+0.0989i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.995+0.0989i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.995+0.0989i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(979,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.995+0.0989i)
|
Particular Values
L(1) |
≈ |
0.0198866−0.400831i |
L(21) |
≈ |
0.0198866−0.400831i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.38+0.295i)T |
| 5 | 1+(2.22−0.220i)T |
| 7 | 1 |
good | 3 | 1−1.66iT−3T2 |
| 11 | 1−4.81iT−11T2 |
| 13 | 1−2.14T+13T2 |
| 17 | 1+5.02T+17T2 |
| 19 | 1+1.36T+19T2 |
| 23 | 1−5.18T+23T2 |
| 29 | 1+6.43T+29T2 |
| 31 | 1+4.62T+31T2 |
| 37 | 1−9.82iT−37T2 |
| 41 | 1+4.71iT−41T2 |
| 43 | 1−0.141T+43T2 |
| 47 | 1−2.55iT−47T2 |
| 53 | 1+4.84iT−53T2 |
| 59 | 1+14.1T+59T2 |
| 61 | 1+10.1iT−61T2 |
| 67 | 1+9.64T+67T2 |
| 71 | 1+9.58iT−71T2 |
| 73 | 1−1.67T+73T2 |
| 79 | 1+11.8iT−79T2 |
| 83 | 1−0.811iT−83T2 |
| 89 | 1−16.0iT−89T2 |
| 97 | 1+1.76T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.60785825319632715959995823610, −9.389010361605334158130633325315, −9.112054934389495666933871125656, −8.023310062190464036608772675749, −7.21399869064591254960395894195, −6.57149170935285815425654207266, −4.91356743556860244475132712672, −4.13032525886699129305797385092, −3.22329661458723348716921015222, −1.76352077327266709218106966521,
0.26467672319380074929214436852, 1.43372749193532313619193647455, 2.83663777893120981612315790363, 4.05071693851969093793922585421, 5.61259644745489784291225764704, 6.47995279449893475011212910203, 7.24330280404845286864813134820, 7.83977504887078179883223081239, 8.759703137117477799470256183016, 9.082351497311752068752666191649