L(s) = 1 | + (0.255 − 1.39i)2-s − 3.18i·3-s + (−1.86 − 0.711i)4-s + (1.80 + 1.31i)5-s + (−4.43 − 0.815i)6-s + (−1.46 + 2.41i)8-s − 7.15·9-s + (2.29 − 2.17i)10-s − 4.51i·11-s + (−2.26 + 5.95i)12-s − 2.22·13-s + (4.19 − 5.75i)15-s + (2.98 + 2.66i)16-s − 2.52·17-s + (−1.83 + 9.94i)18-s − 5.21·19-s + ⋯ |
L(s) = 1 | + (0.180 − 0.983i)2-s − 1.83i·3-s + (−0.934 − 0.355i)4-s + (0.808 + 0.588i)5-s + (−1.80 − 0.332i)6-s + (−0.519 + 0.854i)8-s − 2.38·9-s + (0.725 − 0.688i)10-s − 1.36i·11-s + (−0.654 + 1.71i)12-s − 0.617·13-s + (1.08 − 1.48i)15-s + (0.746 + 0.665i)16-s − 0.613·17-s + (−0.431 + 2.34i)18-s − 1.19·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.155−0.987i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.155−0.987i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.155−0.987i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(979,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.155−0.987i)
|
Particular Values
L(1) |
≈ |
0.648918+0.758693i |
L(21) |
≈ |
0.648918+0.758693i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.255+1.39i)T |
| 5 | 1+(−1.80−1.31i)T |
| 7 | 1 |
good | 3 | 1+3.18iT−3T2 |
| 11 | 1+4.51iT−11T2 |
| 13 | 1+2.22T+13T2 |
| 17 | 1+2.52T+17T2 |
| 19 | 1+5.21T+19T2 |
| 23 | 1−1.71T+23T2 |
| 29 | 1+2.31T+29T2 |
| 31 | 1+4.62T+31T2 |
| 37 | 1+0.336iT−37T2 |
| 41 | 1+3.28iT−41T2 |
| 43 | 1−6.66T+43T2 |
| 47 | 1+1.44iT−47T2 |
| 53 | 1+10.0iT−53T2 |
| 59 | 1+3.20T+59T2 |
| 61 | 1+6.05iT−61T2 |
| 67 | 1−11.1T+67T2 |
| 71 | 1+9.15iT−71T2 |
| 73 | 1−3.24T+73T2 |
| 79 | 1+14.2iT−79T2 |
| 83 | 1+11.3iT−83T2 |
| 89 | 1−15.2iT−89T2 |
| 97 | 1+4.49T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.278736896530875386739848773831, −8.664143010711440617057234765667, −7.74688206603551698841335438905, −6.67403524204306313136137790191, −6.05714521547058172142437950251, −5.23857624772435756294851521611, −3.47286731397915693526110946999, −2.46709876806403161228125907663, −1.83819564120811808245754675303, −0.40898582173424791611880539562,
2.49893633576942021668945475610, 4.06374006545645507335392055779, 4.56376696279378333429290940187, 5.24142213815729187663896258548, 6.05635951242905201420134619133, 7.15143083609230036893788406621, 8.390003849947435856585214283546, 9.110113077266661088353107699133, 9.601605646161050447307661708190, 10.19289131099974402363235861406