L(s) = 1 | + (0.255 − 1.39i)2-s − 3.18i·3-s + (−1.86 − 0.711i)4-s + (1.80 + 1.31i)5-s + (−4.43 − 0.815i)6-s + (−1.46 + 2.41i)8-s − 7.15·9-s + (2.29 − 2.17i)10-s − 4.51i·11-s + (−2.26 + 5.95i)12-s − 2.22·13-s + (4.19 − 5.75i)15-s + (2.98 + 2.66i)16-s − 2.52·17-s + (−1.83 + 9.94i)18-s − 5.21·19-s + ⋯ |
L(s) = 1 | + (0.180 − 0.983i)2-s − 1.83i·3-s + (−0.934 − 0.355i)4-s + (0.808 + 0.588i)5-s + (−1.80 − 0.332i)6-s + (−0.519 + 0.854i)8-s − 2.38·9-s + (0.725 − 0.688i)10-s − 1.36i·11-s + (−0.654 + 1.71i)12-s − 0.617·13-s + (1.08 − 1.48i)15-s + (0.746 + 0.665i)16-s − 0.613·17-s + (−0.431 + 2.34i)18-s − 1.19·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.155 - 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.155 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.648918 + 0.758693i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.648918 + 0.758693i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.255 + 1.39i)T \) |
| 5 | \( 1 + (-1.80 - 1.31i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 3.18iT - 3T^{2} \) |
| 11 | \( 1 + 4.51iT - 11T^{2} \) |
| 13 | \( 1 + 2.22T + 13T^{2} \) |
| 17 | \( 1 + 2.52T + 17T^{2} \) |
| 19 | \( 1 + 5.21T + 19T^{2} \) |
| 23 | \( 1 - 1.71T + 23T^{2} \) |
| 29 | \( 1 + 2.31T + 29T^{2} \) |
| 31 | \( 1 + 4.62T + 31T^{2} \) |
| 37 | \( 1 + 0.336iT - 37T^{2} \) |
| 41 | \( 1 + 3.28iT - 41T^{2} \) |
| 43 | \( 1 - 6.66T + 43T^{2} \) |
| 47 | \( 1 + 1.44iT - 47T^{2} \) |
| 53 | \( 1 + 10.0iT - 53T^{2} \) |
| 59 | \( 1 + 3.20T + 59T^{2} \) |
| 61 | \( 1 + 6.05iT - 61T^{2} \) |
| 67 | \( 1 - 11.1T + 67T^{2} \) |
| 71 | \( 1 + 9.15iT - 71T^{2} \) |
| 73 | \( 1 - 3.24T + 73T^{2} \) |
| 79 | \( 1 + 14.2iT - 79T^{2} \) |
| 83 | \( 1 + 11.3iT - 83T^{2} \) |
| 89 | \( 1 - 15.2iT - 89T^{2} \) |
| 97 | \( 1 + 4.49T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.278736896530875386739848773831, −8.664143010711440617057234765667, −7.74688206603551698841335438905, −6.67403524204306313136137790191, −6.05714521547058172142437950251, −5.23857624772435756294851521611, −3.47286731397915693526110946999, −2.46709876806403161228125907663, −1.83819564120811808245754675303, −0.40898582173424791611880539562,
2.49893633576942021668945475610, 4.06374006545645507335392055779, 4.56376696279378333429290940187, 5.24142213815729187663896258548, 6.05635951242905201420134619133, 7.15143083609230036893788406621, 8.390003849947435856585214283546, 9.110113077266661088353107699133, 9.601605646161050447307661708190, 10.19289131099974402363235861406