Properties

Label 2-98-49.11-c5-0-3
Degree $2$
Conductor $98$
Sign $-0.211 - 0.977i$
Analytic cond. $15.7176$
Root an. cond. $3.96454$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.93 − 2.72i)2-s + (0.0921 − 0.0138i)3-s + (1.19 − 15.9i)4-s + (−11.3 + 28.9i)5-s + (0.232 − 0.291i)6-s + (70.0 + 109. i)7-s + (−39.9 − 50.0i)8-s + (−232. + 71.6i)9-s + (45.4 + 115. i)10-s + (−542. − 167. i)11-s + (−0.111 − 1.48i)12-s + (32.9 + 144. i)13-s + (502. + 129. i)14-s + (−0.644 + 2.82i)15-s + (−253. − 38.1i)16-s + (−1.07e3 + 733. i)17-s + ⋯
L(s)  = 1  + (0.518 − 0.480i)2-s + (0.00591 − 0.000891i)3-s + (0.0373 − 0.498i)4-s + (−0.203 + 0.517i)5-s + (0.00263 − 0.00330i)6-s + (0.540 + 0.841i)7-s + (−0.220 − 0.276i)8-s + (−0.955 + 0.294i)9-s + (0.143 + 0.366i)10-s + (−1.35 − 0.416i)11-s + (−0.000223 − 0.00298i)12-s + (0.0540 + 0.236i)13-s + (0.684 + 0.175i)14-s + (−0.000740 + 0.00324i)15-s + (−0.247 − 0.0372i)16-s + (−0.902 + 0.615i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.211 - 0.977i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.211 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(98\)    =    \(2 \cdot 7^{2}\)
Sign: $-0.211 - 0.977i$
Analytic conductor: \(15.7176\)
Root analytic conductor: \(3.96454\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{98} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 98,\ (\ :5/2),\ -0.211 - 0.977i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.719743 + 0.891943i\)
\(L(\frac12)\) \(\approx\) \(0.719743 + 0.891943i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-2.93 + 2.72i)T \)
7 \( 1 + (-70.0 - 109. i)T \)
good3 \( 1 + (-0.0921 + 0.0138i)T + (232. - 71.6i)T^{2} \)
5 \( 1 + (11.3 - 28.9i)T + (-2.29e3 - 2.12e3i)T^{2} \)
11 \( 1 + (542. + 167. i)T + (1.33e5 + 9.07e4i)T^{2} \)
13 \( 1 + (-32.9 - 144. i)T + (-3.34e5 + 1.61e5i)T^{2} \)
17 \( 1 + (1.07e3 - 733. i)T + (5.18e5 - 1.32e6i)T^{2} \)
19 \( 1 + (-1.22e3 - 2.11e3i)T + (-1.23e6 + 2.14e6i)T^{2} \)
23 \( 1 + (164. + 112. i)T + (2.35e6 + 5.99e6i)T^{2} \)
29 \( 1 + (2.73e3 + 1.31e3i)T + (1.27e7 + 1.60e7i)T^{2} \)
31 \( 1 + (705. - 1.22e3i)T + (-1.43e7 - 2.47e7i)T^{2} \)
37 \( 1 + (-565. - 7.53e3i)T + (-6.85e7 + 1.03e7i)T^{2} \)
41 \( 1 + (6.11e3 + 7.67e3i)T + (-2.57e7 + 1.12e8i)T^{2} \)
43 \( 1 + (-4.58e3 + 5.75e3i)T + (-3.27e7 - 1.43e8i)T^{2} \)
47 \( 1 + (-5.30e3 + 4.91e3i)T + (1.71e7 - 2.28e8i)T^{2} \)
53 \( 1 + (964. - 1.28e4i)T + (-4.13e8 - 6.23e7i)T^{2} \)
59 \( 1 + (4.34e3 + 1.10e4i)T + (-5.24e8 + 4.86e8i)T^{2} \)
61 \( 1 + (3.45e3 + 4.61e4i)T + (-8.35e8 + 1.25e8i)T^{2} \)
67 \( 1 + (2.08e4 - 3.60e4i)T + (-6.75e8 - 1.16e9i)T^{2} \)
71 \( 1 + (-1.45e4 + 7.01e3i)T + (1.12e9 - 1.41e9i)T^{2} \)
73 \( 1 + (2.16e4 + 2.00e4i)T + (1.54e8 + 2.06e9i)T^{2} \)
79 \( 1 + (3.44e4 + 5.96e4i)T + (-1.53e9 + 2.66e9i)T^{2} \)
83 \( 1 + (8.16e3 - 3.57e4i)T + (-3.54e9 - 1.70e9i)T^{2} \)
89 \( 1 + (-1.17e5 + 3.61e4i)T + (4.61e9 - 3.14e9i)T^{2} \)
97 \( 1 - 1.02e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.28140513986488674823208788090, −12.08465789856506946269981490069, −11.20041727881782935668960391802, −10.44685544102776534501203984167, −8.835305347846702068658401604769, −7.79837233125507271036763517120, −6.00362689280056381871988253574, −5.10989192371024953808984575752, −3.28990486659644225896846270077, −2.11369005157439586706349383448, 0.35451214716469725633764696547, 2.77926850247802801797687377307, 4.51779266745211603965773280990, 5.39117245975629963266548155271, 7.05033383698533848401479901659, 8.002412067255688161884680582023, 9.129752758519934512794724196238, 10.76358979128055115160784497498, 11.64681594433244518606419039424, 12.96718238623208775108952082532

Graph of the $Z$-function along the critical line