Properties

Label 2-97e2-1.1-c1-0-141
Degree $2$
Conductor $9409$
Sign $-1$
Analytic cond. $75.1312$
Root an. cond. $8.66782$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.945·2-s + 0.148·3-s − 1.10·4-s − 4.14·5-s − 0.140·6-s − 3.44·7-s + 2.93·8-s − 2.97·9-s + 3.91·10-s − 1.90·11-s − 0.164·12-s − 4.94·13-s + 3.25·14-s − 0.615·15-s − 0.562·16-s − 4.43·17-s + 2.81·18-s − 3.76·19-s + 4.58·20-s − 0.511·21-s + 1.80·22-s − 3.30·23-s + 0.436·24-s + 12.1·25-s + 4.66·26-s − 0.888·27-s + 3.80·28-s + ⋯
L(s)  = 1  − 0.668·2-s + 0.0858·3-s − 0.553·4-s − 1.85·5-s − 0.0573·6-s − 1.30·7-s + 1.03·8-s − 0.992·9-s + 1.23·10-s − 0.574·11-s − 0.0474·12-s − 1.37·13-s + 0.869·14-s − 0.158·15-s − 0.140·16-s − 1.07·17-s + 0.663·18-s − 0.862·19-s + 1.02·20-s − 0.111·21-s + 0.383·22-s − 0.688·23-s + 0.0891·24-s + 2.43·25-s + 0.915·26-s − 0.171·27-s + 0.719·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9409\)    =    \(97^{2}\)
Sign: $-1$
Analytic conductor: \(75.1312\)
Root analytic conductor: \(8.66782\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9409,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad97 \( 1 \)
good2 \( 1 + 0.945T + 2T^{2} \)
3 \( 1 - 0.148T + 3T^{2} \)
5 \( 1 + 4.14T + 5T^{2} \)
7 \( 1 + 3.44T + 7T^{2} \)
11 \( 1 + 1.90T + 11T^{2} \)
13 \( 1 + 4.94T + 13T^{2} \)
17 \( 1 + 4.43T + 17T^{2} \)
19 \( 1 + 3.76T + 19T^{2} \)
23 \( 1 + 3.30T + 23T^{2} \)
29 \( 1 + 0.793T + 29T^{2} \)
31 \( 1 - 3.35T + 31T^{2} \)
37 \( 1 - 3.28T + 37T^{2} \)
41 \( 1 + 7.83T + 41T^{2} \)
43 \( 1 - 11.7T + 43T^{2} \)
47 \( 1 - 2.72T + 47T^{2} \)
53 \( 1 + 5.86T + 53T^{2} \)
59 \( 1 + 5.05T + 59T^{2} \)
61 \( 1 + 5.74T + 61T^{2} \)
67 \( 1 - 3.57T + 67T^{2} \)
71 \( 1 - 15.3T + 71T^{2} \)
73 \( 1 + 7.53T + 73T^{2} \)
79 \( 1 - 4.88T + 79T^{2} \)
83 \( 1 + 1.30T + 83T^{2} \)
89 \( 1 + 3.43T + 89T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59182517821793903806406771501, −6.91792634471448765239666790430, −6.18588144518728999510701219853, −5.09397033804795360238108907211, −4.44991627671663731494410875437, −3.88297273037793218535210085880, −3.03973102304200332097805603733, −2.35691082219275615188106699381, −0.46296461530361128800477084250, 0, 0.46296461530361128800477084250, 2.35691082219275615188106699381, 3.03973102304200332097805603733, 3.88297273037793218535210085880, 4.44991627671663731494410875437, 5.09397033804795360238108907211, 6.18588144518728999510701219853, 6.91792634471448765239666790430, 7.59182517821793903806406771501

Graph of the $Z$-function along the critical line