Properties

Label 2-97e2-1.1-c1-0-14
Degree $2$
Conductor $9409$
Sign $1$
Analytic cond. $75.1312$
Root an. cond. $8.66782$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.34·2-s − 2.80·3-s − 0.183·4-s − 2.23·5-s − 3.77·6-s − 2.93·7-s − 2.94·8-s + 4.85·9-s − 3.00·10-s + 3.16·11-s + 0.513·12-s + 4.16·13-s − 3.95·14-s + 6.25·15-s − 3.60·16-s − 4.55·17-s + 6.54·18-s − 6.97·19-s + 0.408·20-s + 8.22·21-s + 4.26·22-s + 5.32·23-s + 8.24·24-s − 0.0157·25-s + 5.61·26-s − 5.20·27-s + 0.537·28-s + ⋯
L(s)  = 1  + 0.953·2-s − 1.61·3-s − 0.0915·4-s − 0.998·5-s − 1.54·6-s − 1.10·7-s − 1.04·8-s + 1.61·9-s − 0.951·10-s + 0.953·11-s + 0.148·12-s + 1.15·13-s − 1.05·14-s + 1.61·15-s − 0.900·16-s − 1.10·17-s + 1.54·18-s − 1.59·19-s + 0.0914·20-s + 1.79·21-s + 0.908·22-s + 1.11·23-s + 1.68·24-s − 0.00315·25-s + 1.10·26-s − 1.00·27-s + 0.101·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9409\)    =    \(97^{2}\)
Sign: $1$
Analytic conductor: \(75.1312\)
Root analytic conductor: \(8.66782\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9409,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.03079713477\)
\(L(\frac12)\) \(\approx\) \(0.03079713477\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad97 \( 1 \)
good2 \( 1 - 1.34T + 2T^{2} \)
3 \( 1 + 2.80T + 3T^{2} \)
5 \( 1 + 2.23T + 5T^{2} \)
7 \( 1 + 2.93T + 7T^{2} \)
11 \( 1 - 3.16T + 11T^{2} \)
13 \( 1 - 4.16T + 13T^{2} \)
17 \( 1 + 4.55T + 17T^{2} \)
19 \( 1 + 6.97T + 19T^{2} \)
23 \( 1 - 5.32T + 23T^{2} \)
29 \( 1 + 6.18T + 29T^{2} \)
31 \( 1 + 2.80T + 31T^{2} \)
37 \( 1 + 9.21T + 37T^{2} \)
41 \( 1 + 3.19T + 41T^{2} \)
43 \( 1 - 1.26T + 43T^{2} \)
47 \( 1 + 5.28T + 47T^{2} \)
53 \( 1 + 2.85T + 53T^{2} \)
59 \( 1 - 1.81T + 59T^{2} \)
61 \( 1 - 6.17T + 61T^{2} \)
67 \( 1 + 8.95T + 67T^{2} \)
71 \( 1 + 9.14T + 71T^{2} \)
73 \( 1 + 3.19T + 73T^{2} \)
79 \( 1 + 15.3T + 79T^{2} \)
83 \( 1 + 11.4T + 83T^{2} \)
89 \( 1 + 6.17T + 89T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.18199994780286504537331751695, −6.68144151116724544001654474999, −6.27300291153198540347583467826, −5.69932114112062599274846601166, −4.90863345634163672292425840479, −4.05218859550791781855504594704, −3.96079573765343031046521815888, −3.06305781728854255340867885182, −1.52720305303649668363537369401, −0.080280035324800767044311496380, 0.080280035324800767044311496380, 1.52720305303649668363537369401, 3.06305781728854255340867885182, 3.96079573765343031046521815888, 4.05218859550791781855504594704, 4.90863345634163672292425840479, 5.69932114112062599274846601166, 6.27300291153198540347583467826, 6.68144151116724544001654474999, 7.18199994780286504537331751695

Graph of the $Z$-function along the critical line