Properties

Label 2-97e2-1.1-c1-0-137
Degree $2$
Conductor $9409$
Sign $1$
Analytic cond. $75.1312$
Root an. cond. $8.66782$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.51·2-s − 0.754·3-s + 4.31·4-s − 0.589·5-s + 1.89·6-s + 4.62·7-s − 5.81·8-s − 2.43·9-s + 1.48·10-s − 1.16·11-s − 3.25·12-s − 3.22·13-s − 11.6·14-s + 0.445·15-s + 5.98·16-s − 1.25·17-s + 6.10·18-s − 5.66·19-s − 2.54·20-s − 3.48·21-s + 2.93·22-s + 8.36·23-s + 4.38·24-s − 4.65·25-s + 8.11·26-s + 4.09·27-s + 19.9·28-s + ⋯
L(s)  = 1  − 1.77·2-s − 0.435·3-s + 2.15·4-s − 0.263·5-s + 0.774·6-s + 1.74·7-s − 2.05·8-s − 0.810·9-s + 0.468·10-s − 0.352·11-s − 0.940·12-s − 0.895·13-s − 3.10·14-s + 0.114·15-s + 1.49·16-s − 0.305·17-s + 1.43·18-s − 1.29·19-s − 0.568·20-s − 0.761·21-s + 0.626·22-s + 1.74·23-s + 0.895·24-s − 0.930·25-s + 1.59·26-s + 0.788·27-s + 3.76·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9409\)    =    \(97^{2}\)
Sign: $1$
Analytic conductor: \(75.1312\)
Root analytic conductor: \(8.66782\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9409,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4804891610\)
\(L(\frac12)\) \(\approx\) \(0.4804891610\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad97 \( 1 \)
good2 \( 1 + 2.51T + 2T^{2} \)
3 \( 1 + 0.754T + 3T^{2} \)
5 \( 1 + 0.589T + 5T^{2} \)
7 \( 1 - 4.62T + 7T^{2} \)
11 \( 1 + 1.16T + 11T^{2} \)
13 \( 1 + 3.22T + 13T^{2} \)
17 \( 1 + 1.25T + 17T^{2} \)
19 \( 1 + 5.66T + 19T^{2} \)
23 \( 1 - 8.36T + 23T^{2} \)
29 \( 1 - 3.95T + 29T^{2} \)
31 \( 1 + 0.301T + 31T^{2} \)
37 \( 1 - 5.09T + 37T^{2} \)
41 \( 1 + 3.74T + 41T^{2} \)
43 \( 1 + 11.3T + 43T^{2} \)
47 \( 1 - 8.24T + 47T^{2} \)
53 \( 1 + 1.61T + 53T^{2} \)
59 \( 1 + 11.8T + 59T^{2} \)
61 \( 1 + 4.00T + 61T^{2} \)
67 \( 1 + 2.02T + 67T^{2} \)
71 \( 1 - 13.7T + 71T^{2} \)
73 \( 1 + 9.86T + 73T^{2} \)
79 \( 1 + 5.68T + 79T^{2} \)
83 \( 1 + 2.51T + 83T^{2} \)
89 \( 1 + 10.8T + 89T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.892055777900003230822459326532, −7.30663922067684244685623336320, −6.64562670565765798459711978456, −5.81769391683522201806184564473, −4.95181686357708706707559740445, −4.48451790448486749352857175370, −2.95970523891491765930275886075, −2.25129649793036909992956772048, −1.50053569542823725053405426063, −0.45452436033964168463705656110, 0.45452436033964168463705656110, 1.50053569542823725053405426063, 2.25129649793036909992956772048, 2.95970523891491765930275886075, 4.48451790448486749352857175370, 4.95181686357708706707559740445, 5.81769391683522201806184564473, 6.64562670565765798459711978456, 7.30663922067684244685623336320, 7.892055777900003230822459326532

Graph of the $Z$-function along the critical line