Properties

Label 2-97e2-1.1-c1-0-136
Degree $2$
Conductor $9409$
Sign $1$
Analytic cond. $75.1312$
Root an. cond. $8.66782$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.473·2-s + 1.68·3-s − 1.77·4-s + 1.70·5-s − 0.796·6-s − 4.37·7-s + 1.78·8-s − 0.170·9-s − 0.805·10-s − 3.42·11-s − 2.98·12-s + 4.73·13-s + 2.06·14-s + 2.86·15-s + 2.70·16-s − 5.61·17-s + 0.0805·18-s − 7.42·19-s − 3.02·20-s − 7.35·21-s + 1.61·22-s + 6.73·23-s + 3.00·24-s − 2.10·25-s − 2.23·26-s − 5.33·27-s + 7.76·28-s + ⋯
L(s)  = 1  − 0.334·2-s + 0.971·3-s − 0.888·4-s + 0.761·5-s − 0.325·6-s − 1.65·7-s + 0.631·8-s − 0.0567·9-s − 0.254·10-s − 1.03·11-s − 0.862·12-s + 1.31·13-s + 0.553·14-s + 0.739·15-s + 0.676·16-s − 1.36·17-s + 0.0189·18-s − 1.70·19-s − 0.675·20-s − 1.60·21-s + 0.345·22-s + 1.40·23-s + 0.613·24-s − 0.420·25-s − 0.439·26-s − 1.02·27-s + 1.46·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9409\)    =    \(97^{2}\)
Sign: $1$
Analytic conductor: \(75.1312\)
Root analytic conductor: \(8.66782\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9409,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9739092850\)
\(L(\frac12)\) \(\approx\) \(0.9739092850\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad97 \( 1 \)
good2 \( 1 + 0.473T + 2T^{2} \)
3 \( 1 - 1.68T + 3T^{2} \)
5 \( 1 - 1.70T + 5T^{2} \)
7 \( 1 + 4.37T + 7T^{2} \)
11 \( 1 + 3.42T + 11T^{2} \)
13 \( 1 - 4.73T + 13T^{2} \)
17 \( 1 + 5.61T + 17T^{2} \)
19 \( 1 + 7.42T + 19T^{2} \)
23 \( 1 - 6.73T + 23T^{2} \)
29 \( 1 + 0.543T + 29T^{2} \)
31 \( 1 - 2.63T + 31T^{2} \)
37 \( 1 + 2.67T + 37T^{2} \)
41 \( 1 - 3.99T + 41T^{2} \)
43 \( 1 - 1.57T + 43T^{2} \)
47 \( 1 + 7.32T + 47T^{2} \)
53 \( 1 - 3.73T + 53T^{2} \)
59 \( 1 + 5.67T + 59T^{2} \)
61 \( 1 - 1.20T + 61T^{2} \)
67 \( 1 - 1.38T + 67T^{2} \)
71 \( 1 + 3.57T + 71T^{2} \)
73 \( 1 + 9.44T + 73T^{2} \)
79 \( 1 - 15.1T + 79T^{2} \)
83 \( 1 - 12.9T + 83T^{2} \)
89 \( 1 + 0.828T + 89T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.009318575619778683935247954432, −7.01924596808519696588005386410, −6.28032302962580666997065128679, −5.86043400805583862499404162731, −4.86592961659290668044220602050, −4.02419000914151790415370642267, −3.35543752532492673427775962583, −2.65540612890993030743860640968, −1.89786582559845816344834600640, −0.45136980460627355157490416284, 0.45136980460627355157490416284, 1.89786582559845816344834600640, 2.65540612890993030743860640968, 3.35543752532492673427775962583, 4.02419000914151790415370642267, 4.86592961659290668044220602050, 5.86043400805583862499404162731, 6.28032302962580666997065128679, 7.01924596808519696588005386410, 8.009318575619778683935247954432

Graph of the $Z$-function along the critical line