Properties

Label 2-97e2-1.1-c1-0-116
Degree $2$
Conductor $9409$
Sign $1$
Analytic cond. $75.1312$
Root an. cond. $8.66782$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.175·2-s − 0.522·3-s − 1.96·4-s − 0.0832·5-s − 0.0917·6-s + 1.97·7-s − 0.697·8-s − 2.72·9-s − 0.0146·10-s + 4.76·11-s + 1.02·12-s − 2.67·13-s + 0.346·14-s + 0.0435·15-s + 3.81·16-s − 7.24·17-s − 0.478·18-s − 6.71·19-s + 0.163·20-s − 1.03·21-s + 0.837·22-s + 2.79·23-s + 0.364·24-s − 4.99·25-s − 0.469·26-s + 2.99·27-s − 3.88·28-s + ⋯
L(s)  = 1  + 0.124·2-s − 0.301·3-s − 0.984·4-s − 0.0372·5-s − 0.0374·6-s + 0.745·7-s − 0.246·8-s − 0.908·9-s − 0.00462·10-s + 1.43·11-s + 0.297·12-s − 0.742·13-s + 0.0925·14-s + 0.0112·15-s + 0.953·16-s − 1.75·17-s − 0.112·18-s − 1.54·19-s + 0.0366·20-s − 0.225·21-s + 0.178·22-s + 0.582·23-s + 0.0743·24-s − 0.998·25-s − 0.0921·26-s + 0.576·27-s − 0.734·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9409\)    =    \(97^{2}\)
Sign: $1$
Analytic conductor: \(75.1312\)
Root analytic conductor: \(8.66782\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9409,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7822459584\)
\(L(\frac12)\) \(\approx\) \(0.7822459584\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad97 \( 1 \)
good2 \( 1 - 0.175T + 2T^{2} \)
3 \( 1 + 0.522T + 3T^{2} \)
5 \( 1 + 0.0832T + 5T^{2} \)
7 \( 1 - 1.97T + 7T^{2} \)
11 \( 1 - 4.76T + 11T^{2} \)
13 \( 1 + 2.67T + 13T^{2} \)
17 \( 1 + 7.24T + 17T^{2} \)
19 \( 1 + 6.71T + 19T^{2} \)
23 \( 1 - 2.79T + 23T^{2} \)
29 \( 1 + 7.60T + 29T^{2} \)
31 \( 1 + 0.437T + 31T^{2} \)
37 \( 1 - 7.84T + 37T^{2} \)
41 \( 1 + 4.48T + 41T^{2} \)
43 \( 1 + 1.98T + 43T^{2} \)
47 \( 1 - 1.77T + 47T^{2} \)
53 \( 1 + 0.0458T + 53T^{2} \)
59 \( 1 - 8.22T + 59T^{2} \)
61 \( 1 - 11.3T + 61T^{2} \)
67 \( 1 + 3.27T + 67T^{2} \)
71 \( 1 + 2.77T + 71T^{2} \)
73 \( 1 - 6.83T + 73T^{2} \)
79 \( 1 - 7.46T + 79T^{2} \)
83 \( 1 - 1.21T + 83T^{2} \)
89 \( 1 + 3.27T + 89T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.908674877499836932103699896991, −6.81996365200405685928990890332, −6.35857083484611289595925632848, −5.52824212073546151025876067510, −4.90246560017856872022711986350, −4.18361768396799672388747968160, −3.82366193524616824698696556466, −2.52015232204871520075233670414, −1.73882880048964195937166019031, −0.41767152421237360295518033769, 0.41767152421237360295518033769, 1.73882880048964195937166019031, 2.52015232204871520075233670414, 3.82366193524616824698696556466, 4.18361768396799672388747968160, 4.90246560017856872022711986350, 5.52824212073546151025876067510, 6.35857083484611289595925632848, 6.81996365200405685928990890332, 7.908674877499836932103699896991

Graph of the $Z$-function along the critical line