Properties

Label 2-97e2-1.1-c1-0-115
Degree $2$
Conductor $9409$
Sign $1$
Analytic cond. $75.1312$
Root an. cond. $8.66782$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.71·2-s + 2.30·3-s + 0.930·4-s − 1.06·5-s − 3.95·6-s + 0.837·7-s + 1.83·8-s + 2.32·9-s + 1.82·10-s − 5.81·11-s + 2.14·12-s − 3.82·13-s − 1.43·14-s − 2.45·15-s − 4.99·16-s − 3.14·17-s − 3.98·18-s + 3.38·19-s − 0.991·20-s + 1.93·21-s + 9.95·22-s − 4.10·23-s + 4.22·24-s − 3.86·25-s + 6.55·26-s − 1.54·27-s + 0.779·28-s + ⋯
L(s)  = 1  − 1.21·2-s + 1.33·3-s + 0.465·4-s − 0.476·5-s − 1.61·6-s + 0.316·7-s + 0.647·8-s + 0.776·9-s + 0.576·10-s − 1.75·11-s + 0.620·12-s − 1.06·13-s − 0.383·14-s − 0.634·15-s − 1.24·16-s − 0.762·17-s − 0.939·18-s + 0.776·19-s − 0.221·20-s + 0.421·21-s + 2.12·22-s − 0.856·23-s + 0.862·24-s − 0.773·25-s + 1.28·26-s − 0.298·27-s + 0.147·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9409\)    =    \(97^{2}\)
Sign: $1$
Analytic conductor: \(75.1312\)
Root analytic conductor: \(8.66782\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9409,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6805167958\)
\(L(\frac12)\) \(\approx\) \(0.6805167958\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad97 \( 1 \)
good2 \( 1 + 1.71T + 2T^{2} \)
3 \( 1 - 2.30T + 3T^{2} \)
5 \( 1 + 1.06T + 5T^{2} \)
7 \( 1 - 0.837T + 7T^{2} \)
11 \( 1 + 5.81T + 11T^{2} \)
13 \( 1 + 3.82T + 13T^{2} \)
17 \( 1 + 3.14T + 17T^{2} \)
19 \( 1 - 3.38T + 19T^{2} \)
23 \( 1 + 4.10T + 23T^{2} \)
29 \( 1 - 2.85T + 29T^{2} \)
31 \( 1 + 4.74T + 31T^{2} \)
37 \( 1 + 0.202T + 37T^{2} \)
41 \( 1 + 9.14T + 41T^{2} \)
43 \( 1 - 0.400T + 43T^{2} \)
47 \( 1 - 7.27T + 47T^{2} \)
53 \( 1 - 13.3T + 53T^{2} \)
59 \( 1 + 4.74T + 59T^{2} \)
61 \( 1 + 7.15T + 61T^{2} \)
67 \( 1 - 15.6T + 67T^{2} \)
71 \( 1 - 5.34T + 71T^{2} \)
73 \( 1 - 8.85T + 73T^{2} \)
79 \( 1 + 14.5T + 79T^{2} \)
83 \( 1 - 14.1T + 83T^{2} \)
89 \( 1 + 3.81T + 89T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84592360379781598703898246669, −7.53049324826749430590303675483, −6.89009741845036339736255584845, −5.52833395363167186240240142112, −4.88082263624002793696939388538, −4.08939082498205183274590064174, −3.20553015028220946923295470457, −2.30440098843734934496566111670, −1.96238125366327340875349123065, −0.41744592544154408496808823271, 0.41744592544154408496808823271, 1.96238125366327340875349123065, 2.30440098843734934496566111670, 3.20553015028220946923295470457, 4.08939082498205183274590064174, 4.88082263624002793696939388538, 5.52833395363167186240240142112, 6.89009741845036339736255584845, 7.53049324826749430590303675483, 7.84592360379781598703898246669

Graph of the $Z$-function along the critical line