Properties

Label 2-97e2-1.1-c1-0-102
Degree $2$
Conductor $9409$
Sign $1$
Analytic cond. $75.1312$
Root an. cond. $8.66782$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.14·2-s − 0.245·3-s − 0.690·4-s − 0.515·5-s + 0.280·6-s + 3.83·7-s + 3.07·8-s − 2.93·9-s + 0.590·10-s + 3.31·11-s + 0.169·12-s − 5.60·13-s − 4.38·14-s + 0.126·15-s − 2.14·16-s + 2.67·17-s + 3.36·18-s − 7.74·19-s + 0.356·20-s − 0.939·21-s − 3.79·22-s − 5.95·23-s − 0.754·24-s − 4.73·25-s + 6.41·26-s + 1.45·27-s − 2.64·28-s + ⋯
L(s)  = 1  − 0.809·2-s − 0.141·3-s − 0.345·4-s − 0.230·5-s + 0.114·6-s + 1.44·7-s + 1.08·8-s − 0.979·9-s + 0.186·10-s + 1.00·11-s + 0.0488·12-s − 1.55·13-s − 1.17·14-s + 0.0326·15-s − 0.535·16-s + 0.648·17-s + 0.792·18-s − 1.77·19-s + 0.0796·20-s − 0.205·21-s − 0.809·22-s − 1.24·23-s − 0.154·24-s − 0.946·25-s + 1.25·26-s + 0.280·27-s − 0.500·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9409\)    =    \(97^{2}\)
Sign: $1$
Analytic conductor: \(75.1312\)
Root analytic conductor: \(8.66782\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9409,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5281400212\)
\(L(\frac12)\) \(\approx\) \(0.5281400212\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad97 \( 1 \)
good2 \( 1 + 1.14T + 2T^{2} \)
3 \( 1 + 0.245T + 3T^{2} \)
5 \( 1 + 0.515T + 5T^{2} \)
7 \( 1 - 3.83T + 7T^{2} \)
11 \( 1 - 3.31T + 11T^{2} \)
13 \( 1 + 5.60T + 13T^{2} \)
17 \( 1 - 2.67T + 17T^{2} \)
19 \( 1 + 7.74T + 19T^{2} \)
23 \( 1 + 5.95T + 23T^{2} \)
29 \( 1 + 8.99T + 29T^{2} \)
31 \( 1 - 5.15T + 31T^{2} \)
37 \( 1 + 4.84T + 37T^{2} \)
41 \( 1 + 8.21T + 41T^{2} \)
43 \( 1 + 3.85T + 43T^{2} \)
47 \( 1 - 2.57T + 47T^{2} \)
53 \( 1 + 3.76T + 53T^{2} \)
59 \( 1 + 4.90T + 59T^{2} \)
61 \( 1 - 1.67T + 61T^{2} \)
67 \( 1 - 11.7T + 67T^{2} \)
71 \( 1 - 7.49T + 71T^{2} \)
73 \( 1 - 4.95T + 73T^{2} \)
79 \( 1 - 3.32T + 79T^{2} \)
83 \( 1 + 2.93T + 83T^{2} \)
89 \( 1 - 2.77T + 89T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.020532217502640020682949786596, −7.29137078271987051033317000218, −6.44270214974451519638582521121, −5.52537177993204186241736344304, −4.93613308523144803115670986065, −4.28267673358841918478267567508, −3.61560862072804042422572084866, −2.10591834241743220704882542015, −1.78827339847636058825482386198, −0.39159691840061129860123635345, 0.39159691840061129860123635345, 1.78827339847636058825482386198, 2.10591834241743220704882542015, 3.61560862072804042422572084866, 4.28267673358841918478267567508, 4.93613308523144803115670986065, 5.52537177993204186241736344304, 6.44270214974451519638582521121, 7.29137078271987051033317000218, 8.020532217502640020682949786596

Graph of the $Z$-function along the critical line