L(s) = 1 | − 3·2-s + 3·3-s + 4-s − 9·6-s + 4·7-s + 21·8-s + 9·9-s + 34·11-s + 3·12-s + 13·13-s − 12·14-s − 71·16-s − 100·17-s − 27·18-s − 22·19-s + 12·21-s − 102·22-s − 150·23-s + 63·24-s − 39·26-s + 27·27-s + 4·28-s + 14·29-s − 292·31-s + 45·32-s + 102·33-s + 300·34-s + ⋯ |
L(s) = 1 | − 1.06·2-s + 0.577·3-s + 1/8·4-s − 0.612·6-s + 0.215·7-s + 0.928·8-s + 1/3·9-s + 0.931·11-s + 0.0721·12-s + 0.277·13-s − 0.229·14-s − 1.10·16-s − 1.42·17-s − 0.353·18-s − 0.265·19-s + 0.124·21-s − 0.988·22-s − 1.35·23-s + 0.535·24-s − 0.294·26-s + 0.192·27-s + 0.0269·28-s + 0.0896·29-s − 1.69·31-s + 0.248·32-s + 0.538·33-s + 1.51·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - p T \) |
| 5 | \( 1 \) |
| 13 | \( 1 - p T \) |
good | 2 | \( 1 + 3 T + p^{3} T^{2} \) |
| 7 | \( 1 - 4 T + p^{3} T^{2} \) |
| 11 | \( 1 - 34 T + p^{3} T^{2} \) |
| 17 | \( 1 + 100 T + p^{3} T^{2} \) |
| 19 | \( 1 + 22 T + p^{3} T^{2} \) |
| 23 | \( 1 + 150 T + p^{3} T^{2} \) |
| 29 | \( 1 - 14 T + p^{3} T^{2} \) |
| 31 | \( 1 + 292 T + p^{3} T^{2} \) |
| 37 | \( 1 - 354 T + p^{3} T^{2} \) |
| 41 | \( 1 + 102 T + p^{3} T^{2} \) |
| 43 | \( 1 - 8 p T + p^{3} T^{2} \) |
| 47 | \( 1 - 448 T + p^{3} T^{2} \) |
| 53 | \( 1 + 238 T + p^{3} T^{2} \) |
| 59 | \( 1 + 190 T + p^{3} T^{2} \) |
| 61 | \( 1 + 254 T + p^{3} T^{2} \) |
| 67 | \( 1 + 764 T + p^{3} T^{2} \) |
| 71 | \( 1 - 1096 T + p^{3} T^{2} \) |
| 73 | \( 1 - 418 T + p^{3} T^{2} \) |
| 79 | \( 1 + 1352 T + p^{3} T^{2} \) |
| 83 | \( 1 - 156 T + p^{3} T^{2} \) |
| 89 | \( 1 + 930 T + p^{3} T^{2} \) |
| 97 | \( 1 + 114 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.199411618254390600616477054540, −8.530015786049103662135474995072, −7.79196518370262788089385838449, −6.96448868805007976251175048615, −5.98194339309190042953747540954, −4.48335203274436064226001034063, −3.91380715012600979117605473051, −2.29525053404201565262462127591, −1.38873731570247359916577749376, 0,
1.38873731570247359916577749376, 2.29525053404201565262462127591, 3.91380715012600979117605473051, 4.48335203274436064226001034063, 5.98194339309190042953747540954, 6.96448868805007976251175048615, 7.79196518370262788089385838449, 8.530015786049103662135474995072, 9.199411618254390600616477054540