Properties

Label 2-975-1.1-c3-0-86
Degree $2$
Conductor $975$
Sign $-1$
Analytic cond. $57.5268$
Root an. cond. $7.58464$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 3·3-s + 4-s − 9·6-s + 4·7-s + 21·8-s + 9·9-s + 34·11-s + 3·12-s + 13·13-s − 12·14-s − 71·16-s − 100·17-s − 27·18-s − 22·19-s + 12·21-s − 102·22-s − 150·23-s + 63·24-s − 39·26-s + 27·27-s + 4·28-s + 14·29-s − 292·31-s + 45·32-s + 102·33-s + 300·34-s + ⋯
L(s)  = 1  − 1.06·2-s + 0.577·3-s + 1/8·4-s − 0.612·6-s + 0.215·7-s + 0.928·8-s + 1/3·9-s + 0.931·11-s + 0.0721·12-s + 0.277·13-s − 0.229·14-s − 1.10·16-s − 1.42·17-s − 0.353·18-s − 0.265·19-s + 0.124·21-s − 0.988·22-s − 1.35·23-s + 0.535·24-s − 0.294·26-s + 0.192·27-s + 0.0269·28-s + 0.0896·29-s − 1.69·31-s + 0.248·32-s + 0.538·33-s + 1.51·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(975\)    =    \(3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(57.5268\)
Root analytic conductor: \(7.58464\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 975,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p T \)
5 \( 1 \)
13 \( 1 - p T \)
good2 \( 1 + 3 T + p^{3} T^{2} \)
7 \( 1 - 4 T + p^{3} T^{2} \)
11 \( 1 - 34 T + p^{3} T^{2} \)
17 \( 1 + 100 T + p^{3} T^{2} \)
19 \( 1 + 22 T + p^{3} T^{2} \)
23 \( 1 + 150 T + p^{3} T^{2} \)
29 \( 1 - 14 T + p^{3} T^{2} \)
31 \( 1 + 292 T + p^{3} T^{2} \)
37 \( 1 - 354 T + p^{3} T^{2} \)
41 \( 1 + 102 T + p^{3} T^{2} \)
43 \( 1 - 8 p T + p^{3} T^{2} \)
47 \( 1 - 448 T + p^{3} T^{2} \)
53 \( 1 + 238 T + p^{3} T^{2} \)
59 \( 1 + 190 T + p^{3} T^{2} \)
61 \( 1 + 254 T + p^{3} T^{2} \)
67 \( 1 + 764 T + p^{3} T^{2} \)
71 \( 1 - 1096 T + p^{3} T^{2} \)
73 \( 1 - 418 T + p^{3} T^{2} \)
79 \( 1 + 1352 T + p^{3} T^{2} \)
83 \( 1 - 156 T + p^{3} T^{2} \)
89 \( 1 + 930 T + p^{3} T^{2} \)
97 \( 1 + 114 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.199411618254390600616477054540, −8.530015786049103662135474995072, −7.79196518370262788089385838449, −6.96448868805007976251175048615, −5.98194339309190042953747540954, −4.48335203274436064226001034063, −3.91380715012600979117605473051, −2.29525053404201565262462127591, −1.38873731570247359916577749376, 0, 1.38873731570247359916577749376, 2.29525053404201565262462127591, 3.91380715012600979117605473051, 4.48335203274436064226001034063, 5.98194339309190042953747540954, 6.96448868805007976251175048615, 7.79196518370262788089385838449, 8.530015786049103662135474995072, 9.199411618254390600616477054540

Graph of the $Z$-function along the critical line