Properties

Label 2-975-1.1-c3-0-84
Degree $2$
Conductor $975$
Sign $-1$
Analytic cond. $57.5268$
Root an. cond. $7.58464$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 8·4-s − 2·7-s + 9·9-s − 36·11-s − 24·12-s − 13·13-s + 64·16-s + 78·17-s + 74·19-s − 6·21-s + 96·23-s + 27·27-s + 16·28-s + 18·29-s − 214·31-s − 108·33-s − 72·36-s + 286·37-s − 39·39-s − 384·41-s − 524·43-s + 288·44-s − 300·47-s + 192·48-s − 339·49-s + 234·51-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 0.107·7-s + 1/3·9-s − 0.986·11-s − 0.577·12-s − 0.277·13-s + 16-s + 1.11·17-s + 0.893·19-s − 0.0623·21-s + 0.870·23-s + 0.192·27-s + 0.107·28-s + 0.115·29-s − 1.23·31-s − 0.569·33-s − 1/3·36-s + 1.27·37-s − 0.160·39-s − 1.46·41-s − 1.85·43-s + 0.986·44-s − 0.931·47-s + 0.577·48-s − 0.988·49-s + 0.642·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(975\)    =    \(3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(57.5268\)
Root analytic conductor: \(7.58464\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 975,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p T \)
5 \( 1 \)
13 \( 1 + p T \)
good2 \( 1 + p^{3} T^{2} \)
7 \( 1 + 2 T + p^{3} T^{2} \)
11 \( 1 + 36 T + p^{3} T^{2} \)
17 \( 1 - 78 T + p^{3} T^{2} \)
19 \( 1 - 74 T + p^{3} T^{2} \)
23 \( 1 - 96 T + p^{3} T^{2} \)
29 \( 1 - 18 T + p^{3} T^{2} \)
31 \( 1 + 214 T + p^{3} T^{2} \)
37 \( 1 - 286 T + p^{3} T^{2} \)
41 \( 1 + 384 T + p^{3} T^{2} \)
43 \( 1 + 524 T + p^{3} T^{2} \)
47 \( 1 + 300 T + p^{3} T^{2} \)
53 \( 1 + 558 T + p^{3} T^{2} \)
59 \( 1 - 576 T + p^{3} T^{2} \)
61 \( 1 - 74 T + p^{3} T^{2} \)
67 \( 1 + 38 T + p^{3} T^{2} \)
71 \( 1 + 456 T + p^{3} T^{2} \)
73 \( 1 - 682 T + p^{3} T^{2} \)
79 \( 1 - 704 T + p^{3} T^{2} \)
83 \( 1 - 888 T + p^{3} T^{2} \)
89 \( 1 + 1020 T + p^{3} T^{2} \)
97 \( 1 + 110 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.404799828099565590194106074067, −8.199695920929086789673275753900, −7.893483953881562080194370550629, −6.79281965099118075505236927301, −5.35861321313416775366275325131, −4.97001277118877446542716713647, −3.62206646070190373366853235925, −2.95444241956636238116466048171, −1.38229782674140236527152656402, 0, 1.38229782674140236527152656402, 2.95444241956636238116466048171, 3.62206646070190373366853235925, 4.97001277118877446542716713647, 5.35861321313416775366275325131, 6.79281965099118075505236927301, 7.893483953881562080194370550629, 8.199695920929086789673275753900, 9.404799828099565590194106074067

Graph of the $Z$-function along the critical line