Properties

Label 2-975-1.1-c3-0-33
Degree $2$
Conductor $975$
Sign $1$
Analytic cond. $57.5268$
Root an. cond. $7.58464$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s − 3·3-s + 4-s − 9·6-s + 16·7-s − 21·8-s + 9·9-s − 36·11-s − 3·12-s − 13·13-s + 48·14-s − 71·16-s + 30·17-s + 27·18-s + 68·19-s − 48·21-s − 108·22-s + 120·23-s + 63·24-s − 39·26-s − 27·27-s + 16·28-s − 186·29-s + 8·31-s − 45·32-s + 108·33-s + 90·34-s + ⋯
L(s)  = 1  + 1.06·2-s − 0.577·3-s + 1/8·4-s − 0.612·6-s + 0.863·7-s − 0.928·8-s + 1/3·9-s − 0.986·11-s − 0.0721·12-s − 0.277·13-s + 0.916·14-s − 1.10·16-s + 0.428·17-s + 0.353·18-s + 0.821·19-s − 0.498·21-s − 1.04·22-s + 1.08·23-s + 0.535·24-s − 0.294·26-s − 0.192·27-s + 0.107·28-s − 1.19·29-s + 0.0463·31-s − 0.248·32-s + 0.569·33-s + 0.453·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(975\)    =    \(3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(57.5268\)
Root analytic conductor: \(7.58464\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 975,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.528881602\)
\(L(\frac12)\) \(\approx\) \(2.528881602\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p T \)
5 \( 1 \)
13 \( 1 + p T \)
good2 \( 1 - 3 T + p^{3} T^{2} \)
7 \( 1 - 16 T + p^{3} T^{2} \)
11 \( 1 + 36 T + p^{3} T^{2} \)
17 \( 1 - 30 T + p^{3} T^{2} \)
19 \( 1 - 68 T + p^{3} T^{2} \)
23 \( 1 - 120 T + p^{3} T^{2} \)
29 \( 1 + 186 T + p^{3} T^{2} \)
31 \( 1 - 8 T + p^{3} T^{2} \)
37 \( 1 - 226 T + p^{3} T^{2} \)
41 \( 1 + 342 T + p^{3} T^{2} \)
43 \( 1 - 76 T + p^{3} T^{2} \)
47 \( 1 - 552 T + p^{3} T^{2} \)
53 \( 1 - 738 T + p^{3} T^{2} \)
59 \( 1 - 780 T + p^{3} T^{2} \)
61 \( 1 + 154 T + p^{3} T^{2} \)
67 \( 1 + 596 T + p^{3} T^{2} \)
71 \( 1 - 1056 T + p^{3} T^{2} \)
73 \( 1 - 22 T + p^{3} T^{2} \)
79 \( 1 + 112 T + p^{3} T^{2} \)
83 \( 1 - 684 T + p^{3} T^{2} \)
89 \( 1 - 90 T + p^{3} T^{2} \)
97 \( 1 - 334 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.727710906436437382911283066487, −8.784834428323512021797984673283, −7.75832040454384126612603830927, −6.98682752324370834169318554572, −5.66683843991386950987619936357, −5.30713250403921430146680790561, −4.54868894058659111206792154583, −3.48628185209345796580726529955, −2.34104331960217180849058132348, −0.74828824501741003395328360003, 0.74828824501741003395328360003, 2.34104331960217180849058132348, 3.48628185209345796580726529955, 4.54868894058659111206792154583, 5.30713250403921430146680790561, 5.66683843991386950987619936357, 6.98682752324370834169318554572, 7.75832040454384126612603830927, 8.784834428323512021797984673283, 9.727710906436437382911283066487

Graph of the $Z$-function along the critical line