Properties

Label 2-972-108.59-c1-0-26
Degree $2$
Conductor $972$
Sign $0.999 - 0.0112i$
Analytic cond. $7.76145$
Root an. cond. $2.78593$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.41 − 0.0603i)2-s + (1.99 + 0.170i)4-s + (−0.0476 − 0.130i)5-s + (4.57 − 0.807i)7-s + (−2.80 − 0.361i)8-s + (0.0594 + 0.187i)10-s + (0.987 + 0.359i)11-s + (1.19 + 1.00i)13-s + (−6.51 + 0.864i)14-s + (3.94 + 0.680i)16-s + (5.25 + 3.03i)17-s + (−3.80 + 2.19i)19-s + (−0.0726 − 0.269i)20-s + (−1.37 − 0.567i)22-s + (0.440 − 2.49i)23-s + ⋯
L(s)  = 1  + (−0.999 − 0.0427i)2-s + (0.996 + 0.0853i)4-s + (−0.0213 − 0.0585i)5-s + (1.73 − 0.305i)7-s + (−0.991 − 0.127i)8-s + (0.0187 + 0.0594i)10-s + (0.297 + 0.108i)11-s + (0.330 + 0.277i)13-s + (−1.74 + 0.230i)14-s + (0.985 + 0.170i)16-s + (1.27 + 0.736i)17-s + (−0.871 + 0.503i)19-s + (−0.0162 − 0.0601i)20-s + (−0.292 − 0.121i)22-s + (0.0917 − 0.520i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 972 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0112i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 972 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0112i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(972\)    =    \(2^{2} \cdot 3^{5}\)
Sign: $0.999 - 0.0112i$
Analytic conductor: \(7.76145\)
Root analytic conductor: \(2.78593\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{972} (863, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 972,\ (\ :1/2),\ 0.999 - 0.0112i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.31869 + 0.00742905i\)
\(L(\frac12)\) \(\approx\) \(1.31869 + 0.00742905i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.41 + 0.0603i)T \)
3 \( 1 \)
good5 \( 1 + (0.0476 + 0.130i)T + (-3.83 + 3.21i)T^{2} \)
7 \( 1 + (-4.57 + 0.807i)T + (6.57 - 2.39i)T^{2} \)
11 \( 1 + (-0.987 - 0.359i)T + (8.42 + 7.07i)T^{2} \)
13 \( 1 + (-1.19 - 1.00i)T + (2.25 + 12.8i)T^{2} \)
17 \( 1 + (-5.25 - 3.03i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (3.80 - 2.19i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.440 + 2.49i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (-0.395 - 0.471i)T + (-5.03 + 28.5i)T^{2} \)
31 \( 1 + (4.88 + 0.861i)T + (29.1 + 10.6i)T^{2} \)
37 \( 1 + (1.43 - 2.49i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (4.23 - 5.04i)T + (-7.11 - 40.3i)T^{2} \)
43 \( 1 + (0.748 - 2.05i)T + (-32.9 - 27.6i)T^{2} \)
47 \( 1 + (1.91 + 10.8i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 - 8.73iT - 53T^{2} \)
59 \( 1 + (-7.71 + 2.80i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (-1.94 - 11.0i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (-3.62 + 4.32i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (-2.33 + 4.04i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (5.64 + 9.77i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-1.07 - 1.28i)T + (-13.7 + 77.7i)T^{2} \)
83 \( 1 + (1.79 - 1.50i)T + (14.4 - 81.7i)T^{2} \)
89 \( 1 + (-7.63 + 4.40i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (-5.29 - 1.92i)T + (74.3 + 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.28789783484525661354629449626, −8.945232168748149944613367926702, −8.341939386134019098593001159859, −7.80491360432474856916151326616, −6.84285824800690019637839102702, −5.86139136961013600068247686257, −4.75099917754694984527920144357, −3.62424845167381047144505095781, −2.04337653993838010091279323968, −1.19565478401415118198987799700, 1.11132242244199545246106090068, 2.15506851673393748901148754228, 3.47794562534061895782654233941, 5.00463077751840079517710287864, 5.67292204333003831248278343366, 6.95103839827613158673077044697, 7.65038692856746281744536586711, 8.427350026145385948431478558756, 8.988251357271620006625084770336, 9.966843667102226436724408592203

Graph of the $Z$-function along the critical line