L(s) = 1 | + (0.327 + 0.945i)2-s + (−0.458 + 0.888i)3-s + (−0.786 + 0.618i)4-s + (1.68 + 0.161i)5-s + (−0.989 − 0.142i)6-s + (−0.672 + 2.55i)7-s + (−0.841 − 0.540i)8-s + (−0.580 − 0.814i)9-s + (0.399 + 1.64i)10-s + (3.81 + 1.31i)11-s + (−0.189 − 0.981i)12-s + (−0.831 + 2.83i)13-s + (−2.63 + 0.201i)14-s + (−0.916 + 1.42i)15-s + (0.235 − 0.971i)16-s + (2.93 − 1.17i)17-s + ⋯ |
L(s) = 1 | + (0.231 + 0.668i)2-s + (−0.264 + 0.513i)3-s + (−0.393 + 0.309i)4-s + (0.754 + 0.0720i)5-s + (−0.404 − 0.0580i)6-s + (−0.254 + 0.967i)7-s + (−0.297 − 0.191i)8-s + (−0.193 − 0.271i)9-s + (0.126 + 0.521i)10-s + (1.14 + 0.397i)11-s + (−0.0546 − 0.283i)12-s + (−0.230 + 0.785i)13-s + (−0.705 + 0.0539i)14-s + (−0.236 + 0.368i)15-s + (0.0589 − 0.242i)16-s + (0.712 − 0.285i)17-s + ⋯ |
Λ(s)=(=(966s/2ΓC(s)L(s)(−0.900−0.435i)Λ(2−s)
Λ(s)=(=(966s/2ΓC(s+1/2)L(s)(−0.900−0.435i)Λ(1−s)
Degree: |
2 |
Conductor: |
966
= 2⋅3⋅7⋅23
|
Sign: |
−0.900−0.435i
|
Analytic conductor: |
7.71354 |
Root analytic conductor: |
2.77732 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ966(145,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 966, ( :1/2), −0.900−0.435i)
|
Particular Values
L(1) |
≈ |
0.366092+1.59641i |
L(21) |
≈ |
0.366092+1.59641i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.327−0.945i)T |
| 3 | 1+(0.458−0.888i)T |
| 7 | 1+(0.672−2.55i)T |
| 23 | 1+(1.54−4.54i)T |
good | 5 | 1+(−1.68−0.161i)T+(4.90+0.946i)T2 |
| 11 | 1+(−3.81−1.31i)T+(8.64+6.79i)T2 |
| 13 | 1+(0.831−2.83i)T+(−10.9−7.02i)T2 |
| 17 | 1+(−2.93+1.17i)T+(12.3−11.7i)T2 |
| 19 | 1+(0.633+0.253i)T+(13.7+13.1i)T2 |
| 29 | 1+(−0.370+2.57i)T+(−27.8−8.17i)T2 |
| 31 | 1+(−1.49−0.0713i)T+(30.8+2.94i)T2 |
| 37 | 1+(4.13−2.94i)T+(12.1−34.9i)T2 |
| 41 | 1+(1.76−0.805i)T+(26.8−30.9i)T2 |
| 43 | 1+(−2.52−3.92i)T+(−17.8+39.1i)T2 |
| 47 | 1+(0.394+0.227i)T+(23.5+40.7i)T2 |
| 53 | 1+(5.22−5.47i)T+(−2.52−52.9i)T2 |
| 59 | 1+(10.6−2.57i)T+(52.4−27.0i)T2 |
| 61 | 1+(−11.1+5.73i)T+(35.3−49.6i)T2 |
| 67 | 1+(−0.820+4.25i)T+(−62.2−24.9i)T2 |
| 71 | 1+(−7.18+8.29i)T+(−10.1−70.2i)T2 |
| 73 | 1+(5.83+7.41i)T+(−17.2+70.9i)T2 |
| 79 | 1+(−5.95−6.24i)T+(−3.75+78.9i)T2 |
| 83 | 1+(4.67−10.2i)T+(−54.3−62.7i)T2 |
| 89 | 1+(−0.0176−0.370i)T+(−88.5+8.45i)T2 |
| 97 | 1+(1.65+3.62i)T+(−63.5+73.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.933760134188490575033356437534, −9.526734777723857199465231739370, −8.939619478367013937118808139014, −7.81979599820195764427126872073, −6.65032407547399233046143122426, −6.11427779745648018255379539497, −5.30795586691059175103876979911, −4.37789457198497824945870086153, −3.27198053089776028379344134041, −1.84997811399200594451732270481,
0.75453468003270610101362831473, 1.83895601451178212097388906614, 3.21483902365501257022292158762, 4.14742723328805101048355187053, 5.36356121880167865487740007978, 6.16259216846529563457484556962, 6.95197274608066849403859377240, 8.031371782639701225872118691000, 8.975514752636335754571452668374, 9.975843217940355175776243267785