L(s) = 1 | + (−0.327 − 0.945i)2-s + (0.458 − 0.888i)3-s + (−0.786 + 0.618i)4-s + (−1.63 − 0.156i)5-s + (−0.989 − 0.142i)6-s + (−0.689 + 2.55i)7-s + (0.841 + 0.540i)8-s + (−0.580 − 0.814i)9-s + (0.387 + 1.59i)10-s + (2.48 + 0.859i)11-s + (0.189 + 0.981i)12-s + (0.647 − 2.20i)13-s + (2.63 − 0.183i)14-s + (−0.888 + 1.38i)15-s + (0.235 − 0.971i)16-s + (1.98 − 0.795i)17-s + ⋯ |
L(s) = 1 | + (−0.231 − 0.668i)2-s + (0.264 − 0.513i)3-s + (−0.393 + 0.309i)4-s + (−0.731 − 0.0698i)5-s + (−0.404 − 0.0580i)6-s + (−0.260 + 0.965i)7-s + (0.297 + 0.191i)8-s + (−0.193 − 0.271i)9-s + (0.122 + 0.505i)10-s + (0.748 + 0.259i)11-s + (0.0546 + 0.283i)12-s + (0.179 − 0.611i)13-s + (0.705 − 0.0490i)14-s + (−0.229 + 0.356i)15-s + (0.0589 − 0.242i)16-s + (0.482 − 0.192i)17-s + ⋯ |
Λ(s)=(=(966s/2ΓC(s)L(s)(0.146+0.989i)Λ(2−s)
Λ(s)=(=(966s/2ΓC(s+1/2)L(s)(0.146+0.989i)Λ(1−s)
Degree: |
2 |
Conductor: |
966
= 2⋅3⋅7⋅23
|
Sign: |
0.146+0.989i
|
Analytic conductor: |
7.71354 |
Root analytic conductor: |
2.77732 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ966(145,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 966, ( :1/2), 0.146+0.989i)
|
Particular Values
L(1) |
≈ |
0.970431−0.837529i |
L(21) |
≈ |
0.970431−0.837529i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.327+0.945i)T |
| 3 | 1+(−0.458+0.888i)T |
| 7 | 1+(0.689−2.55i)T |
| 23 | 1+(−4.61+1.31i)T |
good | 5 | 1+(1.63+0.156i)T+(4.90+0.946i)T2 |
| 11 | 1+(−2.48−0.859i)T+(8.64+6.79i)T2 |
| 13 | 1+(−0.647+2.20i)T+(−10.9−7.02i)T2 |
| 17 | 1+(−1.98+0.795i)T+(12.3−11.7i)T2 |
| 19 | 1+(−1.53−0.616i)T+(13.7+13.1i)T2 |
| 29 | 1+(−1.10+7.65i)T+(−27.8−8.17i)T2 |
| 31 | 1+(−5.68−0.270i)T+(30.8+2.94i)T2 |
| 37 | 1+(1.22−0.873i)T+(12.1−34.9i)T2 |
| 41 | 1+(−7.20+3.28i)T+(26.8−30.9i)T2 |
| 43 | 1+(3.37+5.25i)T+(−17.8+39.1i)T2 |
| 47 | 1+(−9.53−5.50i)T+(23.5+40.7i)T2 |
| 53 | 1+(−4.68+4.91i)T+(−2.52−52.9i)T2 |
| 59 | 1+(6.85−1.66i)T+(52.4−27.0i)T2 |
| 61 | 1+(2.19−1.13i)T+(35.3−49.6i)T2 |
| 67 | 1+(−0.173+0.902i)T+(−62.2−24.9i)T2 |
| 71 | 1+(−8.05+9.29i)T+(−10.1−70.2i)T2 |
| 73 | 1+(−2.94−3.73i)T+(−17.2+70.9i)T2 |
| 79 | 1+(1.28+1.34i)T+(−3.75+78.9i)T2 |
| 83 | 1+(2.18−4.79i)T+(−54.3−62.7i)T2 |
| 89 | 1+(−0.521−10.9i)T+(−88.5+8.45i)T2 |
| 97 | 1+(−3.10−6.78i)T+(−63.5+73.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.690056893466037340663293392557, −9.044652082715694500450223845402, −8.217479086533986405307424240701, −7.58467775555632024249800439179, −6.47658272503214532726010216498, −5.48406840643628321847141555276, −4.23342431244343478878584270562, −3.24059060800164518629920918911, −2.31693116344996354129632290322, −0.822150829204916605794371922646,
1.09573763596627927241652883158, 3.24531757031976636951450995319, 4.01325136248227037329616399989, 4.81835540996464076663644545133, 6.06981345103668434002590714368, 7.01885407631696375842887670733, 7.59337901327504991928974839091, 8.567608112278383640436468739406, 9.263382550981303211640928232454, 10.05621254880222483584783619797