L(s) = 1 | + (−0.327 − 0.945i)2-s + (0.458 − 0.888i)3-s + (−0.786 + 0.618i)4-s + (−1.63 − 0.156i)5-s + (−0.989 − 0.142i)6-s + (−0.689 + 2.55i)7-s + (0.841 + 0.540i)8-s + (−0.580 − 0.814i)9-s + (0.387 + 1.59i)10-s + (2.48 + 0.859i)11-s + (0.189 + 0.981i)12-s + (0.647 − 2.20i)13-s + (2.63 − 0.183i)14-s + (−0.888 + 1.38i)15-s + (0.235 − 0.971i)16-s + (1.98 − 0.795i)17-s + ⋯ |
L(s) = 1 | + (−0.231 − 0.668i)2-s + (0.264 − 0.513i)3-s + (−0.393 + 0.309i)4-s + (−0.731 − 0.0698i)5-s + (−0.404 − 0.0580i)6-s + (−0.260 + 0.965i)7-s + (0.297 + 0.191i)8-s + (−0.193 − 0.271i)9-s + (0.122 + 0.505i)10-s + (0.748 + 0.259i)11-s + (0.0546 + 0.283i)12-s + (0.179 − 0.611i)13-s + (0.705 − 0.0490i)14-s + (−0.229 + 0.356i)15-s + (0.0589 − 0.242i)16-s + (0.482 − 0.192i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.146 + 0.989i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.146 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.970431 - 0.837529i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.970431 - 0.837529i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.327 + 0.945i)T \) |
| 3 | \( 1 + (-0.458 + 0.888i)T \) |
| 7 | \( 1 + (0.689 - 2.55i)T \) |
| 23 | \( 1 + (-4.61 + 1.31i)T \) |
good | 5 | \( 1 + (1.63 + 0.156i)T + (4.90 + 0.946i)T^{2} \) |
| 11 | \( 1 + (-2.48 - 0.859i)T + (8.64 + 6.79i)T^{2} \) |
| 13 | \( 1 + (-0.647 + 2.20i)T + (-10.9 - 7.02i)T^{2} \) |
| 17 | \( 1 + (-1.98 + 0.795i)T + (12.3 - 11.7i)T^{2} \) |
| 19 | \( 1 + (-1.53 - 0.616i)T + (13.7 + 13.1i)T^{2} \) |
| 29 | \( 1 + (-1.10 + 7.65i)T + (-27.8 - 8.17i)T^{2} \) |
| 31 | \( 1 + (-5.68 - 0.270i)T + (30.8 + 2.94i)T^{2} \) |
| 37 | \( 1 + (1.22 - 0.873i)T + (12.1 - 34.9i)T^{2} \) |
| 41 | \( 1 + (-7.20 + 3.28i)T + (26.8 - 30.9i)T^{2} \) |
| 43 | \( 1 + (3.37 + 5.25i)T + (-17.8 + 39.1i)T^{2} \) |
| 47 | \( 1 + (-9.53 - 5.50i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.68 + 4.91i)T + (-2.52 - 52.9i)T^{2} \) |
| 59 | \( 1 + (6.85 - 1.66i)T + (52.4 - 27.0i)T^{2} \) |
| 61 | \( 1 + (2.19 - 1.13i)T + (35.3 - 49.6i)T^{2} \) |
| 67 | \( 1 + (-0.173 + 0.902i)T + (-62.2 - 24.9i)T^{2} \) |
| 71 | \( 1 + (-8.05 + 9.29i)T + (-10.1 - 70.2i)T^{2} \) |
| 73 | \( 1 + (-2.94 - 3.73i)T + (-17.2 + 70.9i)T^{2} \) |
| 79 | \( 1 + (1.28 + 1.34i)T + (-3.75 + 78.9i)T^{2} \) |
| 83 | \( 1 + (2.18 - 4.79i)T + (-54.3 - 62.7i)T^{2} \) |
| 89 | \( 1 + (-0.521 - 10.9i)T + (-88.5 + 8.45i)T^{2} \) |
| 97 | \( 1 + (-3.10 - 6.78i)T + (-63.5 + 73.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.690056893466037340663293392557, −9.044652082715694500450223845402, −8.217479086533986405307424240701, −7.58467775555632024249800439179, −6.47658272503214532726010216498, −5.48406840643628321847141555276, −4.23342431244343478878584270562, −3.24059060800164518629920918911, −2.31693116344996354129632290322, −0.822150829204916605794371922646,
1.09573763596627927241652883158, 3.24531757031976636951450995319, 4.01325136248227037329616399989, 4.81835540996464076663644545133, 6.06981345103668434002590714368, 7.01885407631696375842887670733, 7.59337901327504991928974839091, 8.567608112278383640436468739406, 9.263382550981303211640928232454, 10.05621254880222483584783619797