L(s) = 1 | + (0.327 − 0.945i)2-s + (−0.458 − 0.888i)3-s + (−0.786 − 0.618i)4-s + (−1.97 + 0.188i)5-s + (−0.989 + 0.142i)6-s + (−0.675 + 2.55i)7-s + (−0.841 + 0.540i)8-s + (−0.580 + 0.814i)9-s + (−0.467 + 1.92i)10-s + (2.38 − 0.826i)11-s + (−0.189 + 0.981i)12-s + (0.570 + 1.94i)13-s + (2.19 + 1.47i)14-s + (1.07 + 1.66i)15-s + (0.235 + 0.971i)16-s + (3.52 + 1.41i)17-s + ⋯ |
L(s) = 1 | + (0.231 − 0.668i)2-s + (−0.264 − 0.513i)3-s + (−0.393 − 0.309i)4-s + (−0.882 + 0.0843i)5-s + (−0.404 + 0.0580i)6-s + (−0.255 + 0.966i)7-s + (−0.297 + 0.191i)8-s + (−0.193 + 0.271i)9-s + (−0.147 + 0.609i)10-s + (0.719 − 0.249i)11-s + (−0.0546 + 0.283i)12-s + (0.158 + 0.538i)13-s + (0.587 + 0.394i)14-s + (0.276 + 0.430i)15-s + (0.0589 + 0.242i)16-s + (0.856 + 0.342i)17-s + ⋯ |
Λ(s)=(=(966s/2ΓC(s)L(s)(0.629+0.776i)Λ(2−s)
Λ(s)=(=(966s/2ΓC(s+1/2)L(s)(0.629+0.776i)Λ(1−s)
Degree: |
2 |
Conductor: |
966
= 2⋅3⋅7⋅23
|
Sign: |
0.629+0.776i
|
Analytic conductor: |
7.71354 |
Root analytic conductor: |
2.77732 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ966(493,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 966, ( :1/2), 0.629+0.776i)
|
Particular Values
L(1) |
≈ |
1.19029−0.567362i |
L(21) |
≈ |
1.19029−0.567362i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.327+0.945i)T |
| 3 | 1+(0.458+0.888i)T |
| 7 | 1+(0.675−2.55i)T |
| 23 | 1+(−2.28+4.21i)T |
good | 5 | 1+(1.97−0.188i)T+(4.90−0.946i)T2 |
| 11 | 1+(−2.38+0.826i)T+(8.64−6.79i)T2 |
| 13 | 1+(−0.570−1.94i)T+(−10.9+7.02i)T2 |
| 17 | 1+(−3.52−1.41i)T+(12.3+11.7i)T2 |
| 19 | 1+(−4.92+1.97i)T+(13.7−13.1i)T2 |
| 29 | 1+(0.905+6.29i)T+(−27.8+8.17i)T2 |
| 31 | 1+(−0.745+0.0355i)T+(30.8−2.94i)T2 |
| 37 | 1+(0.924+0.658i)T+(12.1+34.9i)T2 |
| 41 | 1+(−10.0−4.58i)T+(26.8+30.9i)T2 |
| 43 | 1+(2.01−3.12i)T+(−17.8−39.1i)T2 |
| 47 | 1+(1.95−1.12i)T+(23.5−40.7i)T2 |
| 53 | 1+(−6.02−6.31i)T+(−2.52+52.9i)T2 |
| 59 | 1+(−8.15−1.97i)T+(52.4+27.0i)T2 |
| 61 | 1+(−7.45−3.84i)T+(35.3+49.6i)T2 |
| 67 | 1+(−1.65−8.59i)T+(−62.2+24.9i)T2 |
| 71 | 1+(5.71+6.59i)T+(−10.1+70.2i)T2 |
| 73 | 1+(−3.00+3.82i)T+(−17.2−70.9i)T2 |
| 79 | 1+(−6.24+6.55i)T+(−3.75−78.9i)T2 |
| 83 | 1+(−7.56−16.5i)T+(−54.3+62.7i)T2 |
| 89 | 1+(−0.832+17.4i)T+(−88.5−8.45i)T2 |
| 97 | 1+(0.578−1.26i)T+(−63.5−73.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.889334539354473885170135822536, −9.131886692404763804322357639984, −8.300587410512099475955310083312, −7.41293818721344955253780011945, −6.34262043134195637168091905958, −5.60429413527479801995137751401, −4.44209608957512951630157923140, −3.45306353966649917004471131895, −2.43308518239592368868532918198, −0.954186430479940530279806637702,
0.869865639726113447999708623039, 3.49739171646864283746447508219, 3.73995773924846783384398651816, 4.93934814535067744137021991821, 5.69928475845703962917757290248, 6.94629749769757071770165024993, 7.45566978361457130425923938505, 8.272754098308042510963291920754, 9.388423394930079841426306643720, 9.983956036869691893853387922376