L(s) = 1 | + (−0.327 + 0.945i)2-s + (0.458 + 0.888i)3-s + (−0.786 − 0.618i)4-s + (0.301 − 0.0288i)5-s + (−0.989 + 0.142i)6-s + (−0.249 + 2.63i)7-s + (0.841 − 0.540i)8-s + (−0.580 + 0.814i)9-s + (−0.0714 + 0.294i)10-s + (3.73 − 1.29i)11-s + (0.189 − 0.981i)12-s + (0.539 + 1.83i)13-s + (−2.40 − 1.09i)14-s + (0.163 + 0.254i)15-s + (0.235 + 0.971i)16-s + (3.12 + 1.25i)17-s + ⋯ |
L(s) = 1 | + (−0.231 + 0.668i)2-s + (0.264 + 0.513i)3-s + (−0.393 − 0.309i)4-s + (0.134 − 0.0128i)5-s + (−0.404 + 0.0580i)6-s + (−0.0944 + 0.995i)7-s + (0.297 − 0.191i)8-s + (−0.193 + 0.271i)9-s + (−0.0225 + 0.0931i)10-s + (1.12 − 0.389i)11-s + (0.0546 − 0.283i)12-s + (0.149 + 0.509i)13-s + (−0.643 − 0.293i)14-s + (0.0423 + 0.0658i)15-s + (0.0589 + 0.242i)16-s + (0.757 + 0.303i)17-s + ⋯ |
Λ(s)=(=(966s/2ΓC(s)L(s)(−0.579−0.814i)Λ(2−s)
Λ(s)=(=(966s/2ΓC(s+1/2)L(s)(−0.579−0.814i)Λ(1−s)
Degree: |
2 |
Conductor: |
966
= 2⋅3⋅7⋅23
|
Sign: |
−0.579−0.814i
|
Analytic conductor: |
7.71354 |
Root analytic conductor: |
2.77732 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ966(493,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 966, ( :1/2), −0.579−0.814i)
|
Particular Values
L(1) |
≈ |
0.709996+1.37634i |
L(21) |
≈ |
0.709996+1.37634i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.327−0.945i)T |
| 3 | 1+(−0.458−0.888i)T |
| 7 | 1+(0.249−2.63i)T |
| 23 | 1+(3.17−3.59i)T |
good | 5 | 1+(−0.301+0.0288i)T+(4.90−0.946i)T2 |
| 11 | 1+(−3.73+1.29i)T+(8.64−6.79i)T2 |
| 13 | 1+(−0.539−1.83i)T+(−10.9+7.02i)T2 |
| 17 | 1+(−3.12−1.25i)T+(12.3+11.7i)T2 |
| 19 | 1+(−7.95+3.18i)T+(13.7−13.1i)T2 |
| 29 | 1+(−0.182−1.26i)T+(−27.8+8.17i)T2 |
| 31 | 1+(9.93−0.473i)T+(30.8−2.94i)T2 |
| 37 | 1+(−3.33−2.37i)T+(12.1+34.9i)T2 |
| 41 | 1+(−2.25−1.03i)T+(26.8+30.9i)T2 |
| 43 | 1+(−2.60+4.05i)T+(−17.8−39.1i)T2 |
| 47 | 1+(9.73−5.61i)T+(23.5−40.7i)T2 |
| 53 | 1+(−7.27−7.62i)T+(−2.52+52.9i)T2 |
| 59 | 1+(−7.18−1.74i)T+(52.4+27.0i)T2 |
| 61 | 1+(5.36+2.76i)T+(35.3+49.6i)T2 |
| 67 | 1+(−0.294−1.53i)T+(−62.2+24.9i)T2 |
| 71 | 1+(−4.04−4.67i)T+(−10.1+70.2i)T2 |
| 73 | 1+(−0.581+0.739i)T+(−17.2−70.9i)T2 |
| 79 | 1+(6.89−7.23i)T+(−3.75−78.9i)T2 |
| 83 | 1+(−4.53−9.93i)T+(−54.3+62.7i)T2 |
| 89 | 1+(0.299−6.29i)T+(−88.5−8.45i)T2 |
| 97 | 1+(−7.30+15.9i)T+(−63.5−73.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.750586023507702009595575827329, −9.470936065035187957018659342451, −8.796083870956303661085256889625, −7.86149868675810298551745556798, −6.97442477061786258722338477487, −5.80563788706914994466969167726, −5.44417063103865652265726163675, −4.08774921152955187812102881238, −3.16575051864059297332628764599, −1.56029148559038653978506161673,
0.839727631655079285058932044915, 1.89213651213315427646016718696, 3.38837229891905904620775558061, 3.94931956271532885461736624197, 5.34748829190727193432093552678, 6.42652508349402057994619223084, 7.52768030800214936964048111393, 7.85216457287500443831935697977, 9.131827706063689074479124536615, 9.788116220494236881735461934812