L(s) = 1 | − 3i·3-s + (−11.1 − 0.178i)5-s − 33.0i·7-s − 9·9-s − 48.3·11-s − 60.3i·13-s + (−0.536 + 33.5i)15-s − 17.7i·17-s − 130.·19-s − 99.2·21-s − 70.8i·23-s + (124. + 4i)25-s + 27i·27-s + 104.·29-s − 210.·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.999 − 0.0160i)5-s − 1.78i·7-s − 0.333·9-s − 1.32·11-s − 1.28i·13-s + (−0.00923 + 0.577i)15-s − 0.253i·17-s − 1.58·19-s − 1.03·21-s − 0.642i·23-s + (0.999 + 0.0320i)25-s + 0.192i·27-s + 0.669·29-s − 1.21·31-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(0.0160−0.999i)Λ(4−s)
Λ(s)=(=(960s/2ΓC(s+3/2)L(s)(0.0160−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
0.0160−0.999i
|
Analytic conductor: |
56.6418 |
Root analytic conductor: |
7.52607 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(769,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :3/2), 0.0160−0.999i)
|
Particular Values
L(2) |
≈ |
0.4820253411 |
L(21) |
≈ |
0.4820253411 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3iT |
| 5 | 1+(11.1+0.178i)T |
good | 7 | 1+33.0iT−343T2 |
| 11 | 1+48.3T+1.33e3T2 |
| 13 | 1+60.3iT−2.19e3T2 |
| 17 | 1+17.7iT−4.91e3T2 |
| 19 | 1+130.T+6.85e3T2 |
| 23 | 1+70.8iT−1.21e4T2 |
| 29 | 1−104.T+2.43e4T2 |
| 31 | 1+210.T+2.97e4T2 |
| 37 | 1+300.iT−5.06e4T2 |
| 41 | 1−240.T+6.89e4T2 |
| 43 | 1+108iT−7.95e4T2 |
| 47 | 1+278.iT−1.03e5T2 |
| 53 | 1−328.iT−1.48e5T2 |
| 59 | 1−889.T+2.05e5T2 |
| 61 | 1−241.T+2.26e5T2 |
| 67 | 1+103.iT−3.00e5T2 |
| 71 | 1+277.T+3.57e5T2 |
| 73 | 1+274.iT−3.89e5T2 |
| 79 | 1+366.T+4.93e5T2 |
| 83 | 1−57.7iT−5.71e5T2 |
| 89 | 1−203.T+7.04e5T2 |
| 97 | 1−1.28e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.684864439190878090450450222531, −7.937367687718877388300769067852, −7.45324901334651588087071511638, −6.76758807636533982879548005677, −5.48109088318667325212095964016, −4.42111742583327510673412378804, −3.60854358608341440167908466835, −2.46070596901356179618209060246, −0.69979004844029313231538163536, −0.18227004539074253846466594989,
2.08137921179789906170807221378, 2.95578159069212447572066193867, 4.15979795246281205144207086746, 4.98020717173412635681943499803, 5.85190979733750193427746935887, 6.84508754555273891502008136429, 8.089543048920087776526940778248, 8.572540346350207560321510522074, 9.282950702873196273193481387472, 10.27977306818854730957052407056