L(s) = 1 | + 3i·3-s + (0.178 − 11.1i)5-s − 35.0i·7-s − 9·9-s − 25.6·11-s + 37.6i·13-s + (33.5 + 0.536i)15-s − 95.7i·17-s + 50.8·19-s + 105.·21-s − 110. i·23-s + (−124. − 4i)25-s − 27i·27-s − 54.5·29-s + 198.·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (0.0160 − 0.999i)5-s − 1.89i·7-s − 0.333·9-s − 0.702·11-s + 0.803i·13-s + (0.577 + 0.00923i)15-s − 1.36i·17-s + 0.614·19-s + 1.09·21-s − 1.00i·23-s + (−0.999 − 0.0320i)25-s − 0.192i·27-s − 0.349·29-s + 1.14·31-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(−0.999−0.0160i)Λ(4−s)
Λ(s)=(=(960s/2ΓC(s+3/2)L(s)(−0.999−0.0160i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
−0.999−0.0160i
|
Analytic conductor: |
56.6418 |
Root analytic conductor: |
7.52607 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(769,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :3/2), −0.999−0.0160i)
|
Particular Values
L(2) |
≈ |
0.8970970307 |
L(21) |
≈ |
0.8970970307 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3iT |
| 5 | 1+(−0.178+11.1i)T |
good | 7 | 1+35.0iT−343T2 |
| 11 | 1+25.6T+1.33e3T2 |
| 13 | 1−37.6iT−2.19e3T2 |
| 17 | 1+95.7iT−4.91e3T2 |
| 19 | 1−50.8T+6.85e3T2 |
| 23 | 1+110.iT−1.21e4T2 |
| 29 | 1+54.5T+2.43e4T2 |
| 31 | 1−198.T+2.97e4T2 |
| 37 | 1+266.iT−5.06e4T2 |
| 41 | 1−103.T+6.89e4T2 |
| 43 | 1−108iT−7.95e4T2 |
| 47 | 1−597.iT−1.03e5T2 |
| 53 | 1+305.iT−1.48e5T2 |
| 59 | 1+223.T+2.05e5T2 |
| 61 | 1+485.T+2.26e5T2 |
| 67 | 1−876.iT−3.00e5T2 |
| 71 | 1−585.T+3.57e5T2 |
| 73 | 1−1.13e3iT−3.89e5T2 |
| 79 | 1+685.T+4.93e5T2 |
| 83 | 1−305.iT−5.71e5T2 |
| 89 | 1+887.T+7.04e5T2 |
| 97 | 1+556.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.503107133563289856300618843674, −8.377817074078845434961107539890, −7.57506007086961423574320321824, −6.82173474593088831284943526072, −5.51080071241078138719220741387, −4.49852494971327762959357801024, −4.22197117415714484262611280425, −2.83315352689586680227219239077, −1.15710929027036725883454087288, −0.23820130380906611051906225258,
1.74797225225809062209640747076, 2.67808413607816863972215345814, 3.37492841695897209515294619006, 5.18663533659423481190396093977, 5.86423273286072830583365177404, 6.48523255203081336021150763756, 7.73784231777088848057390462844, 8.186515457468282068586006874569, 9.175080359184590366453340289597, 10.11266375889886116470986421652