L(s) = 1 | + 3i·3-s + (10 − 5i)5-s + 10i·7-s − 9·9-s − 46·11-s + 34i·13-s + (15 + 30i)15-s − 66i·17-s − 104·19-s − 30·21-s − 164i·23-s + (75 − 100i)25-s − 27i·27-s + 224·29-s + 72·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (0.894 − 0.447i)5-s + 0.539i·7-s − 0.333·9-s − 1.26·11-s + 0.725i·13-s + (0.258 + 0.516i)15-s − 0.941i·17-s − 1.25·19-s − 0.311·21-s − 1.48i·23-s + (0.599 − 0.800i)25-s − 0.192i·27-s + 1.43·29-s + 0.417·31-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(0.447+0.894i)Λ(4−s)
Λ(s)=(=(960s/2ΓC(s+3/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
56.6418 |
Root analytic conductor: |
7.52607 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(769,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :3/2), 0.447+0.894i)
|
Particular Values
L(2) |
≈ |
1.537722138 |
L(21) |
≈ |
1.537722138 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3iT |
| 5 | 1+(−10+5i)T |
good | 7 | 1−10iT−343T2 |
| 11 | 1+46T+1.33e3T2 |
| 13 | 1−34iT−2.19e3T2 |
| 17 | 1+66iT−4.91e3T2 |
| 19 | 1+104T+6.85e3T2 |
| 23 | 1+164iT−1.21e4T2 |
| 29 | 1−224T+2.43e4T2 |
| 31 | 1−72T+2.97e4T2 |
| 37 | 1+22iT−5.06e4T2 |
| 41 | 1−194T+6.89e4T2 |
| 43 | 1−108iT−7.95e4T2 |
| 47 | 1+480iT−1.03e5T2 |
| 53 | 1+286iT−1.48e5T2 |
| 59 | 1+426T+2.05e5T2 |
| 61 | 1+698T+2.26e5T2 |
| 67 | 1+328iT−3.00e5T2 |
| 71 | 1+188T+3.57e5T2 |
| 73 | 1+740iT−3.89e5T2 |
| 79 | 1−1.16e3T+4.93e5T2 |
| 83 | 1−412iT−5.71e5T2 |
| 89 | 1+1.20e3T+7.04e5T2 |
| 97 | 1−1.38e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.467437670454232112234383501244, −8.766644010844473602937549864723, −8.126768815843957617172444397341, −6.72185089074116046775563195391, −5.98711442494287936637141828110, −4.95904737334328059198075661642, −4.49983328596882906459509705342, −2.80072094046420710867696922456, −2.15704981035420949541059276785, −0.39508833229165773712208172791,
1.14301097533282647415889360878, 2.30957186702099164991215068515, 3.17605593430784549350289147412, 4.59009741789531277580639603400, 5.73895342183115544031714318363, 6.24791699268170186524000313511, 7.34321019391167641477339616812, 7.958821920559701306408864216731, 8.883251106493685934255539400981, 10.05718288977837683351891995446